Skip to main content
Log in

Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Studies investigating crop resistance to abiotic and biotic stress have largely focused on plant responses to singular forms of stress and individual biochemical pathways that only partially represent stress responses. Thus, combined abiotic and biotic stress treatments and the global assessment of their elicited metabolic expression remains largely unexplored. In this study, we employed targeted and untargeted metabolomics to investigate the molecular responses of maize (Zea mays) to abiotic, biotic, and combinatorial stress.

Objective

We compared the inducible metabolomes of heat-stressed (abiotic) and C. heterostrophus-infected (biotic) maize and examined the effects of heat stress on the ability of maize to defend itself against C. heterostrophus.

Methods

Ultra-high-performance liquid chromatography-high-resolution mass spectrometry was performed on plants grown under control conditions (28 °C), heat stress (38 °C), Cochliobolus heterostrophus infection, or combinatorial stress [heat (38 °C) + C. heterostrophus infection].

Results

Multivariate analyses revealed differential metabolite expression between heat stress, C. heterostrophus infection, and their respective controls. In combinatorial experiments, treatment with heat stress prior to fungal inoculation negatively impacted maize disease resistance against C. heterostrophus, and distinct metabolome separation between combinatorial stressed plants and the non-heat-stressed infected controls was observed. Targeted analysis revealed inducible primary and secondary metabolite responses to abiotic/biotic stress, and combinatorial experiments indicated that deficiency in the hydroxycinnamic acid, p-coumaric acid, may contribute to the heat-induced susceptibility of maize to C. heterostrophus.

Conclusion

These findings demonstrate that abiotic stress can predispose crops to more severe disease symptoms, underlining the increasing need to investigate defense chemistry in plants under combinatorial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available at the Metabolomics Workbench Repository (https://doi.org/10.21228/M8NT36).

References

  • Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15, 664–674.

    Article  CAS  PubMed  Google Scholar 

  • Ali, R., & Siddiqui, N. (2013). Biological aspects of emerging benzothiazoles: A short review. Journal of Chemistry, 2013, 345198.

    Article  Google Scholar 

  • Allwood, J. W., Ellis, J., Heald, D. I., Goodacre, J. K., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant Journal, 46, 351–368.

    Article  CAS  PubMed  Google Scholar 

  • Allwood, J. W., Woznicki, T. L., Xu, Y., Foito, A., Aaby, K., Sungurtas, J., et al. (2019). Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics, 15, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altmann, R., Hausmann, M., Spöttl, T., Gruber, M., Bull, A. W., Menzel, K., et al. (2007). 13-Oxo-ODE is an endogenous ligand for PPARgamma in human colonic epithelial cells. Biochemical Pharmacology, 74, 612–622.

    Article  CAS  PubMed  Google Scholar 

  • Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012.

    Article  Google Scholar 

  • Bandurski, R. S. (1978). Chemistry and physiology of myo-inositol esters of indole-3-acetic acid. In W. W. Wells & F. Eisenberg (Eds.), Cyclitols and phosphoinositides (pp. 35–54). Cambridge: Academic Press.

    Chapter  Google Scholar 

  • Bänziger, M., & Araus, J.-L. (2007). Recent advances in breeding maize for drought and salinity stress tolerance. In M. A. Jenks, P. M. Hasegawa, & S. M. Jain (Eds.), Advances in molecular breeding toward drought and salt tolerant crops (pp. 587–601). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Block, A. K., Hunter, C. T., Sattler, S. E., Rering, C., McDonald, S., Basset, G. J., & Christensen, S. A. (2020). Fighting on two fronts: Elevated insect resistance in flooded maize. Plant, Cell & Environment, 43, 223–234.

    Article  CAS  Google Scholar 

  • Céliz, G., Daz, M., & Audisio, M. C. (2011). Antibacterial activity of naringin derivatives against pathogenic strains. Journal of Applied Microbiology, 111, 731–738.

    Article  PubMed  Google Scholar 

  • Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., & Slingo, J. M. (2005). Simulation of the impact of high temperature stress on annual crop yields. Agricultural and Forest Meteorology, 135, 180–189.

    Article  Google Scholar 

  • Chamberlain, C. A., Hatch, M., & Garrett, T. J. (2019a). Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC-HRMS. Analytical and Bioanalytical Chemistry, 411(19), 4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain, C. A., Hatch, M., & Garrett, T. J. (2019b). Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS ONE, 14, e0222393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, S. A., & Kolomiets, M. V. (2011). The lipid language of plant-fungal interactions. Fungal Genetics and Biology, 48, 4–14.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, S. A., Huffaker, A., Sims, J., Hunter, C. T., Block, A., Vaughan, M. M., et al. (2017). Fungal and herbivore elicitation of the novel maize sesquiterpenoid, zealexin A4, is attenuated by elevated CO2. Planta, 247, 863.

    Article  Google Scholar 

  • Christensen, S. A., Sims, J., Vaughan, M., Hunter, C., Block, A., Willett, D., et al. (2018). Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses. Journal of Experimental Botany, 69, 1693.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J. M., Wasternack, C., & Mur, L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 182, 175–187.

    Article  CAS  Google Scholar 

  • Cote, C. G., & Crain, R. C. (1993). Biochemistry of phosphoinositides. Annual Review of Plant Biology, 44, 333–356.

    Article  CAS  Google Scholar 

  • Crafts-Brandner, S. J., & Law, R. D. (2000). Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta, 212, 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutrona, K. J., Kaufman, B. A., Figueroa, D. M., & Elmore, D. E. (2015). Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Letters, 589, 3915–3920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Leonardis, A. M., Fragasso, M., Beleggia, R., Ficco, D. B. M., de Vita, P., & Mastrangelo, A. M. (2015). Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. International Journal of Molecular Sciences, 16, 30382–30404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, Y., Murphy, K. M., Poretsky, E., Mafu, S., Yang, B., Char, S. N., et al. (2019). Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 5, 1043–1056.

    Article  CAS  PubMed  Google Scholar 

  • Ferruz, E., Loran, S., Herrera, M., Gimenez, I., Bervis, N., Barcena, C., et al. (2016). Inhibition of fusarium growth and mycotoxin production in culture medium and in maize kernels by natural phenolic acids. Journal of Food Protection, 79, 1753-1758(6.

    Article  CAS  PubMed  Google Scholar 

  • Gindro, K., Berger, V., Godard, S., Voinesco, F., Schnee, S., Viret, O., & Alonso-Villaverde, V. (2012). Protease inhibitors decrease the resistance of Vitaceae to Plasmopara viticola. Plant Physiology and Biochemistry, 60, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Glauser, G., Guillarme, D., Grata, E., Boccard, J., Thiocone, A., Carrupt, P.-A., et al. (2008). Optimized liquid chromatography–mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. Journal of Chromatography A, 1180, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Grata, E., Boccard, J., Guillarme, D., Glauser, G., Carrupt, P.-A., Farmer, E. E., et al. (2008). UPLC–TOF-MS for plant metabolomics: A sequential approach for wound marker analysis in Arabidopsis thaliana. Journal of Chromatography B, 871, 261–270.

    Article  CAS  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

    Article  Google Scholar 

  • He, L., Diedrich, J., Chu, Y. Y., & Yates, J. R. (2015). Extracting accurate precursor information for tandem mass spectra by rawconverter. Analytical Chemistry, 87, 11361–11367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Huffaker, A., Kaplan, F., Vaughan, M. M., Dafoe, N. J., Ni, X., Rocca, J. R., et al. (2011). Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiology, 156, 2082–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., et al. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9, 3890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana, N., Sharma, N., & Khurana, P. (2017). Overexpression of a heat stress inducible, wheat myo-inositol-1-phosphate synthase 2 (TaMIPS2) confers tolerance to various abiotic stresses in Arabidopsis thaliana. Agri Gene, 6, 24–30.

    Article  Google Scholar 

  • Kimball, B. A., & Idso, S. B. (1983). Increasing atmospheric CO2: Effects on crop yield, water use and climate. Agricultural Water Management, 7, 55–72.

    Article  Google Scholar 

  • Kowalczyk, S., & Bandurski, R. S. (1991). Enzymic synthesis of 1-O-(indol-3-ylacetyl)-beta-D-glucose. Purification of the enzyme from Zea mays, and preparation of antibodies to the enzyme. The Biochemical Journal, 279(Pt 2), 509–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, R. D., & Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology, 120, 173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Yuan, S., Sun, J., Li, Q., Jiang, W., & Cao, J. (2018). Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism. The International Journal of Food Microbiology, 278, 26–35.

    Article  CAS  PubMed  Google Scholar 

  • Loewus, F. A., & Loewus, M. W. (1983). myo-Inositol: Its biosynthesis and metabolism. Annual Review of Plant Biology, 34, 137–161.

    Article  CAS  Google Scholar 

  • Majumdar, R., Minocha, R., Lebar, M. D., Rajasekaran, K., Long, S., Carter-Wientjes, C., et al. (2019). Contribution of maize polyamine and amino acid metabolism toward resistance against aspergillus flavus infection and aflatoxin production. Frontiers in Plant Science, 10, 692–692.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez, V., Mestre, T. C., Rubio, F., Girones-Vilaplana, A., Moreno, D. A., Mittler, R., & Rivero, R. M. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science, 7, 838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monte, I., Kneeshaw, S., Franco-Zorrilla, J. M., Chini, A., Zamarreño, A. M., García-Mina, J. M., & Solano, R. (2020). An ancient COI1-independent function for reactive electrophilic oxylipins in thermotolerance. Current Biology, 30, 962-971.e3.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, D. S., et al. (2016). Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 17, 211–222.

    Article  Google Scholar 

  • Muench, M., Hsin, C. H., Ferber, E., Berger, S., & Mueller, M. J. (2016). Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. The Journal of Experimental Botany, 67, 6139–6148.

    Article  CAS  PubMed  Google Scholar 

  • Munnik, T., Irvine, R. F., & Musgrave, A. (1998). Phospholipid signalling in plants. Biochimica et Biophysica Acta, 1389, 222–272.

    Article  CAS  PubMed  Google Scholar 

  • Navarova, H., Bernsdorff, F., Doring, A. C., & Zeier, J. (2012). Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24, 5123–5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nidiry, E. S., Ganeshan, G., & Lokesha, A. N. (2011). Antifungal activity and isomerization of octadecyl p-coumarates from Ipomoea carnea subsp. fistulosa. Natural Product Communications, 6, 1889–1892.

    Article  CAS  PubMed  Google Scholar 

  • Oerke, E. C. (1994). Crop production and crop protection. Amsterdam: Elsevier.

    Google Scholar 

  • Patwardhan, A. M., Akopian, A. N., Ruparel, N. B., Diogenes, A., Weintraub, S. T., Uhlson, C., et al. (2010). Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. The Journal of Clinical Investigation, 120, 1617–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce, G., Yamaguchi, Y., Barona, G., & Ryan, C. A. (2010). A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes. Proceedings of the National Academy of Sciences of the United States of America, 107, 14921–14925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera, I. Y., Heilmann, I., & Boss, W. F. (1999). Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proceedings of the National Academy of Sciences of the United States of America, 96, 5838–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad, P. V. V., Boote, K. J., & Allen, L. H. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251.

    Article  Google Scholar 

  • Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14, 340–358.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of Naringenin: A review of clinical trials. Pharmaceuticals (Basel), 12, 11.

    Article  CAS  Google Scholar 

  • Savary, et al. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4, 519–537.

    Article  Google Scholar 

  • Schmelz, E. A., Kaplan, F., Huffaker, A., Dafoe, N. J., Vaughan, M. M., Ni, X., et al. (2011). Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proceedings of the National Academy of Sciences of the United States of America, 108, 5455–5460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifi, H., De Vleesschauwer, D., Aziz, A., & Höfte, M. (2014). Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: The immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Plant Signaling & Behavior, 9, e27995–e27995.

    Article  CAS  Google Scholar 

  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24, 2452.

    Article  CAS  PubMed Central  Google Scholar 

  • Singh, M. K., Tilak, R., Nath, G., Awasthi, S. K., & Agarwal, A. (2013). Design, synthesis and antimicrobial activity of novel benzothiazole analogs. European Journal of Medicinal Chemistry, 63, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Ugarte, C., Calderini, D. F., & Slafer, G. A. (2007). Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Research, 100, 240–248.

    Article  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan, M. M., Huffaker, A., Schmelz, E. A., Dafoe, N. J., Christensen, S., Sims, J., et al. (2014). Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides. Plant, Cell & Environment, 37, 2691–2706.

    Article  CAS  Google Scholar 

  • Vaughan, M. M., Huffaker, A., Schmelz, E. A., Dafoe, N. J., Christensen, S. A., McAuslane, H. J., et al. (2016). Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic fusarium verticillioides. PLoS ONE, 11, e0159270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Liu, R., Lim, G. H., de Lorenzo, L., Yu, K., Zhang, K., et al. (2018). Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances, 4, eaar4509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter, G., Todd, C. D., Trovato, M., Forlani, G., & Funck, D. (2015). Physiological implications of arginine metabolism in plants. Frontiers in Plant Science, 6, 534–534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamakawa, H., Kamada, H., Satoh, M., & Ohashi, Y. (1998). Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiology, 118, 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell & Environment, 36, 2085–2103.

    Article  CAS  Google Scholar 

  • Zhang, et al. (2014). Proteomic analysis of the heat stress response in leaves of two contrasting chrysanthemum varieties. Plant Omics Journal, 7, 229–236.

    Google Scholar 

Download references

Acknowledgements

We thank Fred Quispe, Maritza Romero, Bevin Furguson, and Steve Willms for their technical support. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.

Funding

This research was funded by the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) project 6036-11210-001-00D.

Author information

Authors and Affiliations

Authors

Contributions

SAC and ES designed research; SAC, ES, CAC, and AKB performed research; CAC and HTA contributed analytical tools; SAC, ES, and CAC analyzed the data; SAC, ES, CAC, and AKB interpreted the data; and SAC, ES, and CAC wrote the paper.

Corresponding author

Correspondence to Shawn A. Christensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Consent to participate

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2020_1739_MOESM1_ESM.xlsx

Supplementary Table 1. Parameters for processing of metabolomics acquisition data using MZmine (Version 2.30). (XLSX 11 kb)

11306_2020_1739_MOESM2_ESM.xlsx

Supplementary Table 2. Significant metabolites identified in this study; all were detected in positive ion mode. (XLSX 11 kb)

11306_2020_1739_MOESM3_ESM.xlsx

Supplementary Table 3. Top significant identified and unidentified features from the four comparisons in this study, all were detected in positive ion mode. (XLSX 28 kb)

11306_2020_1739_MOESM4_ESM.xlsx

Supplementary Table 4. Principal component analysis loadings values for heat stress (38ºC) vs. control (28ºC) (ref. Fig. 1). (XLSX 298 kb)

11306_2020_1739_MOESM5_ESM.xlsx

Supplementary Table 5. Principal component analysis loadings values for C. heterostrophus infection vs. control (ref. Fig. 2). (XLSX 332 kb)

11306_2020_1739_MOESM6_ESM.xlsx

Supplementary Table 6. Principal component analysis loadings values for heat stress (38ºC) vs. C. heterostrophus infection (ref. Fig. 3). (XLSX 288 kb)

11306_2020_1739_MOESM7_ESM.xlsx

Supplementary Table 7. Principal component analysis loadings values for C. heterostrophus infected maize leaf tissue under control (28ºC) or heat-stressed (38ºC) conditions (ref. Fig. 4). (XLSX 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, S.A., Santana, E.A., Alborn, H.T. et al. Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics 17, 6 (2021). https://doi.org/10.1007/s11306-020-01739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01739-2

Keywords

Navigation