Skip to main content
Log in

Equivalence Between Uniform \(L^{p^*}\) A Priori Bounds and Uniform \(L^{\infty }\) A Priori Bounds for Subcritical p-Laplacian Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We establish sufficient conditions for a uniform \(L^{p^\star }(\Omega )\) bound to imply a uniform \(L^\infty (\Omega )\) bound for positive weak solutions of subcritical p-Laplacian equations. We also provide an equivalent result for sequences of boundary-value problems. As consequences, we prove that any set of solutions with finite energy is \(L^\infty (\Omega )\) a priori bounded, and also obtain an alternative proof of the existence of a priori bounds for subcritical power like nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto, W., Huang, Y.X.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. 32(7), 819–830 (1998)

    Article  MathSciNet  Google Scholar 

  2. Anane, A.: Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris. t. 30, 725–728 (1987)

    MATH  Google Scholar 

  3. Azizieh, C., Clément, P.: A priori estimates and continuation methods for positive solutions of \(p\)-Laplace equations. J. Differ. Equ. 179(1), 213–245 (2002)

    Article  MathSciNet  Google Scholar 

  4. Boccardo, L., Gallouet, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  6. Byun, S.S., Wang, L., Zhou, S.: Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250(1), 167–196 (2007)

    Article  MathSciNet  Google Scholar 

  7. Castro, A., Mavinga, N., Pardo, R.: Equivalence between uniform \(L^{2^\star }(\Omega )\) a priori bounds and uniform \(L^{\infty }(\Omega )\) a priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal. 53(1), 43–56 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Castro, A., Pardo, R.: A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut. 28, 715–731 (2015)

    Article  MathSciNet  Google Scholar 

  9. Castro, A., Pardo, R.: A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22(3), 783–790 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Cianchi, A., Maz’ya, W.: Gradient regularity via rearrangements for \(p\)-Laplacian type elliptic boundary value problems. J. Eur. Math. Soc. 16, 571–595 (2014)

    Article  MathSciNet  Google Scholar 

  11. Cianchi, A., Maz’ya, W.: Global gradient estimates in elliptic problems under minimal data and domain regularity. Commun. Pure Appl. Anal. 14(1), 285–311 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cuesta, M., Takak, P.: A Strong Comparison Principle for the Dirichlet \(p\)-Laplacian. Lecture Notes in Pure and Applied Mathematics, vol. 194, pp. 79–87. Dekker, New York (1998)

    Google Scholar 

  13. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré. Analyse non linéaire 15(4), 493–516 (1998)

    Article  MathSciNet  Google Scholar 

  14. Damascelli, L., Pacella, F.: Monotonicity and symmetry of solutions of \(p\)-Laplace equations, \(1<p<2\), via the moving plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(4), 689–707 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Damascelli, L., Pacella, F.: Monotonicity and symmetry results for \(p\)-Laplace equations and applications. Adv. Differ. Equ. 5(7–9), 1179–1200 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Damascelli, L., Pardo, R.: A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. 41, 475–496 (2018)

    Article  MathSciNet  Google Scholar 

  17. Damascelli, L., Sciunzi, B.: Regularity, monotonicity and symmetry of positive solutions of \(m\)-Laplace equations. J. Differ. Equ. 206(2), 483–515 (2004)

    Article  MathSciNet  Google Scholar 

  18. Damascelli, L., Sciunzi, B.: Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of \(m\)-Laplace equations. Calc. Var. Partial Differ. Equ. 25(2), 139–159 (2006)

    Article  MathSciNet  Google Scholar 

  19. de Figueiredo, D.G., Lions, P.-L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61(1), 41–63 (1982)

    MathSciNet  MATH  Google Scholar 

  20. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  21. DiBenedetto, E., Manfredi, J.J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115(5), 1107–1134 (1993)

    Article  MathSciNet  Google Scholar 

  22. Dinca, G., Jebelean, P., Mawhin, J.: A Result of Ambrosetti–Rabinowitz Type for p-Laplacian Qualitative Problems for Differential Equations and Control Theory, pp. 231–242. World Science Publication, River Edge (1995)

    MATH  Google Scholar 

  23. Filippucci, R., Lini, C.: Existence results and a priori estimates for solutions of quasilinear problems with gradient terms. Opt. Math. 39(2), 195–206 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Garcia Azorero, J., Peral, I.: Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues. Commun. Partial Differ. Equ. 12, 1389–1430 (1987)

    Article  MathSciNet  Google Scholar 

  25. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  26. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6(8), 883–901 (1981)

    Article  MathSciNet  Google Scholar 

  27. Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. Theory Methods Appl. 13(8), 879–902 (1989)

    Article  MathSciNet  Google Scholar 

  28. Herrón, S., Lopera, E.: Signed radial solutions for a weighted p-superlinear problem. Electron. J. Differential Equations 24, 13 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Iwaniek, T.: Projections onto gradient fields and \(L^p\) estimates for degenerated elliptic operators. Stud. Math. 75, 293–312 (1983)

    Article  Google Scholar 

  30. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MathSciNet  Google Scholar 

  31. Lindqvist, P.: On the equation \(\Delta _p u + \lambda |u|^{p-2} u=0\). Proc. Am. Math. Soc. 109(1), 157–164 (1990)

    MATH  Google Scholar 

  32. Mavinga, N., Pardo, R.: A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl. 449(2), 1172–1181 (2017). https://doi.org/10.1016/j.jmaa.2016.12.058

    Article  MathSciNet  MATH  Google Scholar 

  33. Mingione, G.R.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010)

    Article  MathSciNet  Google Scholar 

  34. Palatucci, G.: \(p\)-Laplacian problems with critical Sobolev exponent. Asymptot. Anal. 73(1–2), 37–52 (2011)

    Article  MathSciNet  Google Scholar 

  35. Peral, I.: Multiplicity of solutions for the p-Laplacian. Lecture Notes of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations. I.C.T.P, Trieste, Italy (1997)

  36. Pucci, P., Serrin, J.: The Maximum Principle. Birkhauser, Basel (2007)

    Book  Google Scholar 

  37. Qinghua, X., Ying, L., Wang, L.: Pohožaev identities from domain deformation. Int. J. Math. 21(9), 1121–1134 (2010)

    Article  Google Scholar 

  38. Ruiz, D.: A priori estimates and existence of positive solutions for strongly nonlinear problems. J. Differ. Equ. 199, 96–114 (2004)

    Article  MathSciNet  Google Scholar 

  39. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  Google Scholar 

  40. Serrin, J., Zou, H.: Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189, 79–142 (2002)

    Article  MathSciNet  Google Scholar 

  41. Vazquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  Google Scholar 

  42. Zou, H.H.: A priori estimates and existence for quasi-linear elliptic equations. Calc. Var. Partial Differ. Equ. 33(4), 417–437 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous referee for a careful reading of the manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N. Mavinga was supported by the Lang Faculty Fellowship 2019-2020, Swarthmore College.

R. Pardo is supported by Spanish Ministerio de Ciencia e Innovación (MICINN) under Projects MTM2016-75465-P, and PID2019-103860GB-I00, and by UCM-BSCH, Spain, GR58/08, Grupo 920894.

Appendix

Appendix

In this section, we recall all the auxiliary results that are used to prove Corollary 4.1 on existence of a priori \(L^\infty (\Omega )\) bounds for power like nonlinearities, which include monotonicity of the solutions and moving planes method, first eigenvalue of the p-Laplace operator, Picone’s identity and inequality, and Pohozaev’s identity.

1.1 Monotonicity of the Solutions and Moving Planes Method

Let us recall some results on the monotonicity of solutions of the p-Laplace equations. We consider the following problem:

$$\begin{aligned} \left\{ {\begin{array}{*{20}l} { - \Delta _{p} (u) = f(u),} &{} {\qquad {\text {in}}\, \Omega } \\ {u > 0,} &{} {\qquad {\text {in}}\, \Omega } \\ { u = 0,} &{} {\qquad {\text {on}}\, \partial \Omega ,} \\ \end{array} } \right. \end{aligned}$$
(6.1)

where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^N\), \(N\geqslant 2\), \(1<p<\infty \), and we have the following hypotheses on f:

  1. (*)

    \(f:[0,\infty )\rightarrow {\mathbb {R}}\) is a continuous function which is locally Lipschitz continuous in \((0, \infty )\).

The results that we are going to recall can be briefly rephrased saying that all the conclusions of the moving planes method of Gidas, Ni, and Nirenberg’s Theorem (see [25]) hold for the p-Laplacian, assuming that f is locally Lipschitz continuous, and if \(p>2\), assuming moreover that \(f(s)>0 \) if \(s>0 \) (see [13,14,15, 17, 18]). Concerning weak and strong comparison principles for the p-Laplacian, see, e.g., [12, 13, 17, 18, 27, 36, 41].

To state more precisely some known result about the monotonicity and symmetry of solutions of p-Laplace equations, we introduce the following notations.

Let \(\nu \) be a direction in \({\mathbb {R}}^N\). For a real number \(\lambda \), we define the moving plane:

$$\begin{aligned} T^{\nu }_{\lambda }=\{x \in {\mathbb {R}} : x\cdot \nu = \lambda \}, \end{aligned}$$
(6.2)

the cap:

$$\begin{aligned} \Omega ^{\nu }_{\lambda }= \{x \in \Omega :x \cdot \nu < \lambda \}, \end{aligned}$$
(6.3)

the reflected point:

$$\begin{aligned} x^{\nu }_{\lambda }=R^{\nu }_{\lambda }(x)=x+2(\lambda - x \cdot \nu )\nu , \quad \quad x \in {\mathbb {R}}^N, \end{aligned}$$
(6.4)

and

$$\begin{aligned} a(\nu )=\inf _{x\in \Omega }x\cdot \nu . \end{aligned}$$
(6.5)

If \(\lambda > a(\nu )\), then \(\Omega ^{\nu }_{\lambda }\) is nonempty, and thus, we set the reflected cap:

$$\begin{aligned} (\Omega ^{\nu }_{\lambda })'= R^{\nu }_{\lambda }(\Omega ^{\nu }_{\lambda }). \end{aligned}$$
(6.6)

Following [25, 39], we observe that for \(\lambda - a(\nu )\) small, then \((\Omega ^{\nu }_{\lambda })'\) is contained in \(\Omega \) and will remain in it, at least until one of the following occurs:

  1. (iv)

    \((\Omega ^{\nu }_{\lambda })'\) becomes internally tangent to \(\partial \Omega \).

  2. (ii)

    \(\ T^{\nu }_{\lambda }\) is orthogonal to \(\partial \Omega \).

Let \(\Lambda _1 (\nu )\) be the set of those \(\lambda >a(\nu )\), such that for each \(\mu < \lambda \), none of the conditions (iv) and (ii) holds and defines:

$$\begin{aligned} \lambda _{1}(\nu )= \sup \, \Lambda _1 (\nu ). \end{aligned}$$
(6.7)

Moreover, let:

$$\begin{aligned} \Lambda _2(\nu )=\{\lambda > a(\nu ): (\Omega ^{\nu }_\mu )'\subseteq \Omega \quad \forall \mu \in (a(\nu ),\lambda ]\}, \end{aligned}$$
(6.8)

and

$$\begin{aligned} \lambda _2 (\nu )=\sup \,\Lambda _2(\nu ). \end{aligned}$$
(6.9)

Since \(\Omega \) is assumed to be smooth, note that neither \(\Lambda _1(\nu ) \) nor \( \Lambda _2(\nu ) \) are empty, and \(\Lambda _1(\nu ) \subseteq \Lambda _2(\nu )\), so that \(\lambda _1 (\nu ) \leqslant \lambda _2 (\nu ) \) (in the terminology of [25], \(\Omega ^{\nu }_{\lambda _1 (\nu )}\) and \(\Omega ^{\nu }_{\lambda _2 (\nu )}\) correspond to the ‘maximal cap’, and the ‘optimal cap’, respectively). Finally, define:

$$\begin{aligned} \Lambda _0(\nu )=\{\lambda > a(\nu ): u\leqslant u^{\nu }_{\lambda }\quad \forall \mu \in (a(\nu ),\lambda ]\}, \end{aligned}$$
(6.10)

and

$$\begin{aligned} \lambda _0 (\nu )=\sup \,\Lambda _0(\nu ). \end{aligned}$$
(6.11)

Theorem 6.1

Let \(\Omega \) be a bounded smooth domain in \({\mathbb {R}}^N\), \(N\geqslant 2\), \(1<p<\infty \), \(f:[0,\infty )\rightarrow {\mathbb {R}}\), a continuous function which is locally Lipschitz continuous in \((0, \infty )\) and strictly positive in \((0, \infty )\) if \(p>2\). Let \(u\in C^1({\overline{\Omega }})\) be a weak solution of (6.1).

For any direction \(\nu \) and for \(\lambda \) in the interval \((a(\nu ),\lambda _1 (\nu )]\), we have:

$$\begin{aligned} u(x)\leqslant u(x^{\nu }_{\lambda })\quad \forall x \in \Omega ^{\nu }_{\lambda }. \end{aligned}$$
(6.12)

If f is locally Lipschitz continuous in the closed interval \([0, \infty )\), then (6.12) holds for any \(\lambda \) in the interval \((a(\nu ),\lambda _2 (\nu ))\).

Corollary 6.2

If f is locally Lipschitz continuous in the closed interval \([0, \infty )\) and strictly positive in \((0, \infty )\), and the domain \( \Omega \) is convex with respect to a direction \(\nu \) and symmetric with respect to the hyperplane \(T_{0}^{\nu }= \left\{ x \in \mathbb {R}^{N} : x \cdot \nu =0 \right\} \), then u is symmetric, i.e., \(u(x)=u(x_0^{\nu }) \), and nondecreasing in the \(\nu \)-direction in \( \Omega _0 ^{\nu } \). In particular, if \(\Omega \) is a ball, then u is radially symmetric and radially decreasing.

Remark 6.3

In this paper, we assume f positive for \(p>2\) only, because we are going to exploit the monotonicity results stated in the previous theorem, obtained in [14, 15, 17, 18], and in these papers the positivity of f is assumed when \(p>2\).

In any case, in all the results that we prove, we always assume that f satisfies (A).

As a consequence of the previous theorem, solutions are monotone increasing from the points on the boundary along directions that belong to a neighborhood of directions close to the inner boundary.

As a further consequence, we have the following property, as observed in [19] for \(p=2\), which can be deduced by contradiction using the strict convexity of the domain and the monotonicity of the solutions provided by the previous cited papers (see [3] for a related geometric discussion).

Lemma 6.4

Let \(\Omega \) be a strictly convex bounded smooth domain, and define \(\Omega _{\delta }= \{ x \in \Omega : \text { dist }(x , \partial \Omega ) > \delta \}\) for \(\delta >0 \).

Then, the following holds for a weak solution \(u \in C^1 ({\overline{\Omega }})\) of the problem (1.1), where f satisfies the condition (A):

$$\begin{aligned} \left\{ {\begin{array}{*{20}l} {\exists \;\gamma ,\varepsilon > 0,\,{\text {depending\,only\,on}}\,\Omega , {\text {such\, that}}} \\ {\forall \;x \in \Omega {\setminus }\Omega _{\varepsilon }\, {\text {there\,is\,a\,part\,of\,a\,cone\,I}}_{{\text {x}}} {\text { with}}} \\ {(i)\quad u(\xi ) \ge u(x)\;\quad \forall \;\xi \in I_{x} ,} \\ {(ii)\quad I_{x} \subset \Omega _{{\frac{\varepsilon }{2}}} ,} \\ {(iii)\quad {\text {meas }}(I_{x} ) \ge \gamma .} \\ \end{array} } \right. \end{aligned}$$
(6.13)

Geometrically, \(I_x\) is a part of a cone \(K_x\) with vertex in x, where all the \(K_x\) are congruent to a fixed cone K, and if \(x \in \Omega {\setminus }\Omega _{ \frac{\varepsilon }{2}} \), then \(I_x=K_x\cap \Omega _{ \frac{\varepsilon }{2}} \).

Let us emphasize that \(\varepsilon \) and \(\gamma \) depend only on the geometry of the strictly convex, bounded, smooth domain \(\Omega \).

We will use this conditions to get \(L^{\infty }\) a priori bounds in a neighborhood of the boundary, for the solutions on a strictly convex, bounded, smooth domain \(\Omega \).

1.2 First Eigenvalue and Eigenfunction

Let \(\Omega \) be a bounded domain and \(1<p< \infty \). A real number \(\lambda \) is a (nonlinear) eigenvalue of the p-Laplacian, with associated eigenfunction u if \(u \in W_0^{1,p}(\Omega )\), \(u \not \equiv 0 \), solves the equation \( - \Delta _p u = \lambda \, |u|^{p-2}u \text { in } \Omega \).

Although the general theory of eigenvalues for the p-Laplacian is far from complete (see [24] and the survey [35]), the properties of the first eigenvalue are known and are the same as in the case \(p=2\). Namely, the following result holds (see [2, 31, 35]).

Theorem 6.5

Let us define:

$$\begin{aligned} \lambda _1 = \lambda _1 (p, \Omega ) := \inf _{v \in W_0^{1,p}(\Omega )} \left\{ \int _{\Omega } |Dv|^p \, dx \, : \, \int _{\Omega } |v|^p \, dx =1 \right\} . \end{aligned}$$
(6.14)

Then, \(\lambda _1 \) is the first eigenvalue, it is simple, and it is isolated.

Moreover, a first eigenfunction does not change sign in \(\Omega \), and by the strong maximum principle, it is in fact either strictly positive or strictly negative in \(\Omega \). Therefore, we can select a unique eigenfunction \( \phi _1 \), such that \( \int _{\Omega } |\phi _1|^p \, dx =1 \) and \(\phi _1 >0 \) in \(\Omega \).

1.3 Picone’s Identity and Inequality

The following extension of the Picone’s identity for the p-Laplacian has been proved by Allegretto and Huang, see [1].

Theorem 6.6

Let \(v_1,v_2 \ge 0 \) be differentiable functions in an open set \(\Omega \), with \(v_2 >0\) and \(p>1\). Put:

$$\begin{aligned} L(v_1, v_2)= & {} |\nabla v_1 |^p +(p-1) \frac{v_1^p}{v_2^p} |\nabla v_2 |^p - p\frac{v_1^{p-1}}{v_2^{p-1}} \nabla v_1 \cdot |\nabla v_2 |^{p-2} \nabla v_2, \\ R(v_1, v_2)= & {} |\nabla v_1 |^p - \nabla \left( \, \frac{v_1^p}{v_2^{p-1}}\, \right) \cdot |\nabla v_2 |^{p-2} \nabla v_2. \end{aligned}$$

Then, \( R(v_1, v_2)=L(v_1, v_2)\) and \( L(v_1, v_2) \ge 0 \).

As a consequence, we have:

$$\begin{aligned} \nabla \left( \, \frac{v_1^p}{v_2^{p-1}}\, \right) \cdot |\nabla v_2 |^{p-2} \nabla v_2 \le |\nabla v_1 |^p. \end{aligned}$$
(6.15)

1.4 Pohozaev’s Identity for the p-Laplacian

The following extension of the Pohozaev’s identity for the p-Laplacian has been proved by Xu (see [37, Theorem 4.1]; see also [27] for \(f=f(u)\)).

Theorem 6.7

Let \(u \in W_0^{1,p}(\Omega ) \cap L^{\infty } ( \Omega ) \) be a weak solution of the problem:

$$\begin{aligned} \left\{ {\begin{array}{*{20}l} { - \Delta _{p} (u) = f(x,u)} &{} {\quad {\text {in }} \Omega } \\ {u = 0} &{} {\quad {\text {on }} \partial \Omega ,} \\ \end{array} } \right. \end{aligned}$$
(6.16)

where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^N\), \(N\geqslant 2\), \(p>1\), and \(f:[0,\infty )\rightarrow {\mathbb {R}}\) is a continuous function.

Let \(F(x,t)= \int _0 ^t f(x,s) \, ds \), be a primitive of the function f. Then:*****

$$\begin{aligned}&\frac{N-p}{p} \int _{\Omega } \big [p^* F(x,u) - f(x,u)\, u\big ] \, dx + \sum _{i=1}^N \int _{\Omega } F_{x_i}(x,u) x_i \, dx\nonumber \\&\quad =\frac{p-1}{p} \int _{\partial \Omega }\left| \frac{\partial u}{\partial \nu }\right| ^p (x \cdot \nu ) \, ds, \end{aligned}$$
(6.17)

where \(\nu \) is the unit exterior normal on \(\partial \Omega \).

We will need also a local \(W^{1, \infty }\) result at the boundary, namely the following.

Theorem 6.8

Let \(\Omega \) be a smooth bounded domain in \({\mathbb {R}}^N\), \(N \ge 2\), \(g \in L^{(p^*)'}(\Omega )\), and let \(u \in C^1 ({\overline{\Omega }}) \) be a solution of the problem:

$$\begin{aligned} \left\{ {\begin{array}{*{20}l} { - \Delta _{p} (u) = f(x,u)} &{} {\quad {\text {in }}\Omega } \\ {u = 0} &{} {\quad {\text {on }}\partial \Omega ,} \\ \end{array} } \right. \end{aligned}$$
(6.18)

For \(\delta >0 \), let \(\Omega _{\delta }= \{ x \in \Omega : \text { dist }(x ,\partial \Omega ) > \delta \}\), and assume that \(u \; , \; g \in L^{\infty }(\Omega {\setminus }\Omega _{ \delta })\) with \( \Vert g \Vert _ {L^{\infty } (\Omega {\setminus }\Omega _{\delta }) } \le M \), \(\Vert u \Vert _ {L^{\infty } (\Omega {\setminus }\Omega _{\delta }) } \le M\).

Then, there exists a constant \(C>0\) only depending on M and \(\delta \), such that:

$$\begin{aligned} \Vert \nabla u \Vert _{L^{\infty } (\partial \Omega ) } \le C. \end{aligned}$$

This results follows from the global estimates by Lieberman ([30]) extending the local interior estimates by DiBenedetto ([20]). A direct simple proof can be read in [16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavinga, N., Pardo, R. Equivalence Between Uniform \(L^{p^*}\) A Priori Bounds and Uniform \(L^{\infty }\) A Priori Bounds for Subcritical p-Laplacian Equations. Mediterr. J. Math. 18, 13 (2021). https://doi.org/10.1007/s00009-020-01673-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01673-6

Mathematics Subject Classification

Keywords

Navigation