Skip to main content

Advertisement

Log in

Theoretical and experimental verification of molecular properties of novel benzamide derivatives using computational platforms and in vitro antibacterial activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of N-(benzo[d]oxazol-2-ylcarbamothioyl)-2/4-substituted benzamides were synthesized by the reaction of 2-aminobenzoxazole with apposite benzoyl isothiocyanate. The structure of the newly synthesized compounds was confirmed by chemical tests, elemental (C, H, N, and S), and spectral (IR, 1H NMR, 13C NMR, and mass) analysis. All the synthesized compounds were evaluated experimentally for their antibacterial activity against Gram-positive and Gram-negative bacteria. The test results show moderate to potent antibacterial activity compared to the standard drug. The binding interactions of newly synthesized ligand and protein were correlated using a molecular docking study using a binding pocket of GlcN-6-P synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:1–8.

    Article  Google Scholar 

  2. Kumbhare RM, Singu PS, Kanugala S, Dhawale SA, Kumar CG. Synthesis and pharmacological evaluation of some amide functionalized 1H-Benzo[d]imidazole-2-thiol derivatives as antimicrobial agents. ChemistrySelect. 2020;5:117–23.

    Article  Google Scholar 

  3. Srinivas A, Sagar J, Sarangapani M. Design, synthesis and biological evaluation of benzoxazole derivatives as cyclooxygensase-2 inhibitors. Synthesis. 2010;2:7–12.

    CAS  Google Scholar 

  4. Wanjari PM, Bharati AV, Ingle VN. Synthesis, characterization, in vitro antibacterial activity of some novel N-{(6-Substituted-1,3-benzo[d]thiazol-2-yl)carbamothioyl}-2/4-substituted benzamides. Int J Chemtech Res. 2017;10:394–400.

    CAS  Google Scholar 

  5. Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Zolfigol MA, Hojati SF. Silica Sulfuric acid catalyzed synthesis of benzoxazoles, benzimidazoles and oxazolo[4,5-b]pyridines under heterogeneous and solvent-free conditions. Iran Chem Soc. 2008;5:S65–70.

    Article  CAS  Google Scholar 

  6. Siddiqui N, Sarafroz M, Alam M, Ahsan W. Synthesis, anticonvulsant and neurotoxicity evaluation of 5-carbomethoxybenzoxazole derivatives. Acta Pol Pharm. 2008;65:444–55.

    Google Scholar 

  7. Kaplancikli ZA, Turan-Zitouni G, Revial G, Guven K. Synthesis and study of antibacterial and antifungal activities of novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl] acetylamino] thiazoles. Arch Pharm Res. 2004;27:1081–5.

    Article  CAS  PubMed  Google Scholar 

  8. Katsura Y, Inoue Y, Nishino S, Tomoi M, Itoh H, Takasugi H. Studies on antiulcer drugs. III. Synthesis and antiulcer activities of imidazo [1,2-a] pyridinylethyl-benzoxazoles and related compounds. A novel class of histamine H2-receptor antagonists. Chem Pharm Bull. 1992;40:1424–38.

    Article  CAS  Google Scholar 

  9. Tariq S, Kamboj P, Alam O, Amir M. 2,4-Triazole-based benzothiazole/benzoxazole derivatives: design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg Chem. 2018;81:630–41.

    Article  CAS  PubMed  Google Scholar 

  10. Seenaiah D, Reddy PR, Reddy GM, Padmaja A, Padmavathi V. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem. 2014;77:1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Darque A, Dumetre A, Hutter S, Casano G, Robin M, Pannecouque C, et al. Synthesis and biological evaluation of new heterocyclic quinolinones as anti-parasite and anti-HIV drug candidates. Bioorg Med Chem Lett. 2009;19:5962–4.

    Article  CAS  PubMed  Google Scholar 

  12. Klimesova V, Koci J, Waisser K, Kaustova J, Mollmann U. Preparation and in vitro evaluation of benzylsulfanyl benzoxazole derivatives as potential antituberculosis agents. Eur J Med Chem. 2009;44:2286–93.

    Article  CAS  PubMed  Google Scholar 

  13. Vinsova J, Cermakova K, Tomeckova A, Ceckova M, Jampilek J, Cermak P, et al. Synthesis and antimicrobial evaluation of new 2-substituted 5, 7-di-tert-butylbenzoxazoles. Bioorg Med Chem. 2006;14:5850–65.

    Article  CAS  PubMed  Google Scholar 

  14. Bahadur S, Pandey KK. Synthesis of Ethyl-para-(2-benzoxazolyl)phenoxyacetate and corresponding hydrazides. J Indian Chem Soc. 1981;58:883–4.

    CAS  Google Scholar 

  15. Koksal M, Gokhan N, Kupeli E, Yesilada E, Erdogan H. Analgesic and anti-inflammatory activities of some new Mannich bases of 5-nitro-2-benzoxazolinones. Arch Pharmacal Res. 2007;30:419–24.

    Article  CAS  Google Scholar 

  16. Youssef M, Sherif S, Elkady A, Hamouda S. Synthesis of some new benzoxazole acetonitrile derivatives and evaluation of their herbicidal efficiency. J Anim Sci. 2010;12:1080–90.

    Google Scholar 

  17. Yang C, Zhi X, Xu H. Synthesis of benzoxazole derivatives of honokiol as insecticidal agents against Mythimna separata Walker. Bioorg Med Chem Lett. 2015;25:2217–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bulawaa CE, Connelly S, DeVit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. PNAS. 2012;109:9629–34.

    Article  Google Scholar 

  19. Minehira D, Takahara S, Adachi I, Toyooka N. Laboratory and practical synthesis of suvorexant, a selective dual orexin receptor antagonist. Tetrahedron Lett. 2014;55:1–3.

    Article  Google Scholar 

  20. Cosi C, Carilla-Durand E, Assie MB, Ormiere AM, Maraval M, Leduc N, et al. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol. 2006;535:135–44.

    Article  CAS  PubMed  Google Scholar 

  21. Negri D, Kishi Y. A total synthesis of polyether antibiotic (−)-A23187 (calcimycin). Tetrahedron Lett. 1987;28:1063–6.

    Article  CAS  Google Scholar 

  22. Catley MC, Birrell MA, Hardaker EL, De Alba J, Farrow S, Haj-Yahia S, et al. Estrogen receptor β: expression profile and possible anti-inflammatory role in disease. J Pharmacol Exp Ther. 2008;326:83–8.

    Article  CAS  PubMed  Google Scholar 

  23. Oehlers L, Mazzitelli CL, Brodbelt JS, Rodriguez M, Kerwin S. Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2004;15:1593–603.

    Article  CAS  PubMed  Google Scholar 

  24. Kusumi T, Ooi T, Walchli MR, Kakisawa H. Structure of the novel antibiotics boxazomycins A, B, and C. J Am Chem Soc. 1988;110:2954–8.

    Article  CAS  Google Scholar 

  25. Martinez GR, Grieco PA, Williams E, Kanai K, Srinivasan CV. Stereocontrolled total synthesis of antibiotic A-23187 (calcimycin). J Am Chem Soc. 1982;104:1436–8.

    Article  CAS  Google Scholar 

  26. Sun N, Li B, Shao J, Mo W, Hu B, Shen Z, et al. A general and facile one-pot process of isothiocyanates from amines under aqueous conditions. Beilstein J Org Chem. 2012;8:61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukerjee AK, Ashare R. Isothiocyanates in the chemistry of heterocycles. Chem Rev. 1991;91:1–24.

    Article  CAS  Google Scholar 

  28. Bedane KG, Singh G. Reactivity and diverse synthetic applications of acyl isothiocyanates. ARKIVOC. 2015;2015:206–45.

    Article  Google Scholar 

  29. Garrepalli S, Sarangapani M, Garrepally P, Chilukala S. Design, synthesis and biological evaluation of benzoxazole derivatives as Cyclooxygensase-2 inhibitors. Der Pharm Lett. 2011;3:427–32.

    CAS  Google Scholar 

  30. Rana A, Siddiqui N, Khan SA, Haque SE, Bhat MA. N-{[(6-substituted-1,3-benzothiazole-2-yl)amino]carbonothioyl}-2/4-substituted benzamides:synthesisand pharmacological evaluation. Eur J Med Chem. 2008;43:1114–22.

    Article  CAS  PubMed  Google Scholar 

  31. Hernandes MZ, Cavalcanti SM, Moreira DR, Azevedo Junior WF, Leite AC. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets. 2010;11:303–14.

    Article  CAS  PubMed  Google Scholar 

  32. Wojciechowski M, Milewski S, Mazerski J, Borowski E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents, Molecular modelling studies in drug design. Acta Biochim Pol. 2005;52:647–53.

    Article  CAS  PubMed  Google Scholar 

  33. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Magaldi S, Mata-Essayag S, Capriles CH, Perez C, Colella MT, Olaizola C, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8:39–45.

    Article  CAS  PubMed  Google Scholar 

  35. Valgas C, Machado De Souza S, Elza, Smania FA, Smania A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38:369–80.

    Article  Google Scholar 

  36. Jayanna ND, Vagdevi HM, Dharshan JC, Raghavendra R, Telkar SB. Synthesis, antimicrobial, analgesic activity, and molecular docking studies of novel 1-(5,7-dichloro-1, 3-benzoxazol-2-yl)-3-phenyl-1H-pyrazole-4-carbaldehyde derivatives. Med Chem Res. 2013;22:1–9.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the Principal, RCOEM, and Head of the Chemistry Department, RCOEM, Nagpur for providing laboratory facilities for experimental work. Special thanks to the Head of the Department of Bio-Chemistry, Dr. Ambedkar College, Nagpur for screening the compounds for antibacterial activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam M. Wanjari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanjari, P.M., Mokale, S.N., Bharati, A.V. et al. Theoretical and experimental verification of molecular properties of novel benzamide derivatives using computational platforms and in vitro antibacterial activity. Med Chem Res 30, 655–663 (2021). https://doi.org/10.1007/s00044-020-02671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02671-9

Keywords

Navigation