Skip to main content
Log in

Cluster realization of Weyl groups and q-characters of quantum affine algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an infinite quiver \(Q({\mathfrak {g}})\) and a family of periodic quivers \(Q_m({\mathfrak {g}})\) for a finite-dimensional simple Lie algebra \({\mathfrak {g}}\) and \(m \in {\mathbb Z}_{>1}\). The quiver \(Q({\mathfrak {g}})\) is essentially same as what introduced in Hernandez and Leclerc (J Eur Math Soc 18:1113–1159, 2016) for the quantum affine algebra \({\hat{{\mathfrak {g}}}}\). We construct the Weyl group \(W({\mathfrak {g}})\) as a subgroup of the cluster modular group for \(Q_m({\mathfrak {g}})\), in a similar way as (Inoue et al. in Cluster realizations of Weyl groups and higher Teichmüller theory. arXiv:1902.02716), and study its applications to the q-characters of quantum non-twisted affine algebras \(U_q({\hat{{\mathfrak {g}}}})\) (Frenkel and Reshetikhin in Contemp Math 248:163–205, 1999), and to the lattice \({\mathfrak {g}}\)-Toda field theory (Inoue and Hikami in Nucl Phys B 581:761–775, 2000). In particular, when q is a root of unity, we prove that the q-character is invariant under the Weyl group action. We also show that the A-variables for \(Q({\mathfrak {g}})\) correspond to the \(\tau \)-function for the lattice \({\mathfrak {g}}\)-Toda field equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1.  The author thanks Ryo Fujita for pointing out this fact.

References

  1. Bucher, E.: Maximal green sequences for cluster algebras associated to orientable surfaces with empty boundary. Arnold Math. J. 2(4), 487–510 (2016)

    Article  MathSciNet  Google Scholar 

  2. Chari, C., Moura, A.A.: Characters and blocks for finite-dimensional representations of quantum affine algebras. Int. Math. Res. Not. 5, 257–298 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chari, V., Pressley, A.: Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994). In: CMS Conference Proceedings, vol. 16. AMS, Providence, RI, pp. 59–78 (1995)

  4. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. No. 103, 1–211 (2006)

    Article  Google Scholar 

  5. Fock, V.V., Goncharov, A.B.: Cluster \({\cal{X}}\)-Varieties, Amalgamation and Poisson–Lie Groups, Algebraic Geometry and Number Theory, Volume 253 of Progress in Mathematics, pp. 27–68. Birkhäuser, Boston (2006)

    Google Scholar 

  6. Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Frenkel, E., Mukhin, E.: The \(q\)-characters at root of unity. Adv. Math. 171, 139–167 (2002)

    Article  MathSciNet  Google Scholar 

  8. Frenkel, E., Reshetikhin, N.: Deformations of \({\cal{W}}\)-algebras associated to simple Lie algebras. Commun. Math. Phys. 197, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformation of \({\cal{W}}\)-algebras. Contemp. Math. 248, 163–205 (1999)

    Article  MathSciNet  Google Scholar 

  10. Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  11. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15, 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  12. Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math. 158, 977–1018 (2003)

    Article  MathSciNet  Google Scholar 

  13. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    Article  MathSciNet  Google Scholar 

  15. Goncharov, A.B., Shen, L.: Donaldson–Thomas transformations of moduli spaces of \(G\)-local systems. Adv. Math. 327, 225–348 (2018)

    Article  MathSciNet  Google Scholar 

  16. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil–Petersson forms. Duke Math. J. 127, 291–311 (2005)

    Article  MathSciNet  Google Scholar 

  17. Hernandez, D., Leclerc, B.: A cluster algebra approach to \(q\)-characters of Kirillov–Reshetikhin modules. J. Eur. Math. Soc. 18, 1113–1159 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hernandez, D., Leclerc, B.: Cluster algebras and category \({\cal{O}}\) for representations of Borel subalgebras of quantum affine algebras. Algebra Number Theory 10(9), 2015–2052 (2016)

    Article  MathSciNet  Google Scholar 

  19. Inoue, R.: The lattice Toda field theory and lattice \({\cal{W}}\) algebras for \(B_2\) and \(C_2\). J. Phys. A Math. Gen. 35, 1013–1024 (2002)

    Article  ADS  Google Scholar 

  20. Inoue, R., Hikami, K.: The lattice Toda field theory for simple Lie algebras: Hamiltonian structure and \(\tau \)-function. Nucl. Phys. B 581, 761–775 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Inoue, R., Iyama, O., Keller, B., Kuniba, A., Nakanishi, T.: Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type \(B_r\). Publ. Res. Inst. Math. Sci. 49(1), 1–42 (2013)

    Article  MathSciNet  Google Scholar 

  22. Inoue, R., Iyama, O., Kuniba, A., Nakanishi, T., Suzuki, J.: Periodicities of T-systems and Y-systems. Nagoya Math. J. 197, 59–174 (2010)

    Article  MathSciNet  Google Scholar 

  23. Inoue, R., Ishibashi, T., Oya, H.: Cluster Realizations of Weyl Groups and Higher Teichmuller Theory. arXiv:1902.02716

  24. Inoue, R., Lam, T., Pylyavskyy, P.: On the cluster nature and quantization of geometric \(R\)-matrices. Publ. RIMS 55, 25–78 (2019)

    Article  MathSciNet  Google Scholar 

  25. Keller, B.: Cluster algebras, quiver representations and triangulated categories. In: Holm, T., Jorgensen, P., Rouquier, R. (eds.) Triangulated Categories, London Mathematical Society, Lecture Note Series, vol. 375, pp. 76–160. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  26. Keller, B: On cluster theory and quantum dilogarithm identities, representations of algebras and related topics. In: EMS Series of Congress Reports, pp. 85–116. Eur. Math. Soc., Zürich (2011)

  27. Masuda, T., Okubo, N., Tsuda, T.: Birational Weyl group actions via mutation combinatorics in cluster algebras. RIMS Kôkyûroku 2127, 20–38 (2019). (in Japanese)

    Google Scholar 

Download references

Acknowledgements

The author thanks Ryo Fujita, Tsukasa Ishibashi and Hironori Oya for valuable comments and discussions. The author is supported by JSPS KAKENHI Grant Number 16H03927, 18KK0071 and 19K03440. The author is grateful to anonymous referees for helpful comments and referring [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rei Inoue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, R. Cluster realization of Weyl groups and q-characters of quantum affine algebras. Lett Math Phys 111, 4 (2021). https://doi.org/10.1007/s11005-020-01347-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-020-01347-0

Keywords

Mathematics Subject Classification

Navigation