Skip to main content

Advertisement

Log in

Microstructural and mechanical characterization of ceria-stabilized tetragonal zirconia/alumina composites produced through a segregated-network approach for ceramic bushing applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this study was to develop ceramic bushings used in automotive engineering. To achieve this, 12 mol% ceria (CeO2)-stabilized tetragonal polycrystalline zirconia (12Ce-TZP)/10–20 wt% alumina (Al2O3) composites were designed by using a segregated-network approach. They were subsequently produced by wet-mixing, cold isostatic pressing (CIP), computer numerical control (CNC) machining, binder burnout, and sintering at 1550–1600 °C for 1–3 h. Physical, mechanical, and microstructural properties of 12Ce-TZP/Al2O3-sintered composites were characterized using the Archimedes’ principle, Vickers hardness (HV), indentation fracture toughness (KIc), flexural strength (σ), X-ray diffraction (XRD), ultra-high-resolution scanning electron microscopy (UHR-SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses. According to the overall results, 12Ce-TZP/Al2O3 composites were sintered up to 99.5% of theoretical density, when sintering temperature and dwell time were increased. 12Ce-TZP/10 wt% Al2O3/1600 °C/2 h composite, showing high mechanical properties in HV = 9.52 ± 0.09 GPa, KIc = 15.44 ± 0.15 MPa m1/2, and σ = 955.41 ± 15 MPa, was considered the most appropriate composition for ceramic bushing production. XRD analyses indicated that 12Ce-TZP/Al2O3 composites consisted of tetragonal zirconia (t-ZrO2) and corundum (α-Al2O3) phases, while 12Ce-TZPs were found to contain only t-ZrO2 phase with no trace of monoclinic zirconia (m-ZrO2). UHR-SEM investigations revealed that the microstructural evolution of 12Ce-TZP/Al2O3 composites was observed as an interpenetrated intragranular-type through the formation of a segregated-network structure. In addition, energy-absorbing mechanisms, i.e., crack propagation hindrance, crack blunting, crack bridging, crack deflection, and stress-induced t-ZrO2 → m-ZrO2 phase transformation were seen to govern the enhancement of mechanical properties. It is thought that results presented herein are also significant for new commercial applications of 12Ce-TZP/Al2O3 composites rather than other biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this research are available from the corresponding author, A.Y., upon reasonable request.

References

  1. Witek, S.R., Butler, E.P.: Zirconia particles coarsening and the effect of zirconia additions on the mechanical properties of certain commercial aluminas. J. Am. Ceram. Soc. 69, 523–529 (1986)

    Article  CAS  Google Scholar 

  2. Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008)

    Article  CAS  Google Scholar 

  3. Tanaka, S., Takaba, M., Ishiura, Y., Kamimura, E., Baba, K.: A 3-year follow up of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) frameworks for fixed dental prostheses. J Prosthodont Res. 59, 55–61 (2015)

    Article  Google Scholar 

  4. Chen, L.B.: Yttria-stabilized zirconia thermal barrier coatings - a review. Surf. Rev. Lett. 13, 535–544 (2006)

    Article  CAS  Google Scholar 

  5. Akin, I., Yilmaz, E., Sahin, F., Yucel, O., Goller, G.: Effect of CeO2 addition on densification and microstructure of Al2O3-YSZ composites. Ceram. Int. 37, 3273–3280 (2011)

    Article  CAS  Google Scholar 

  6. Fornabaio, M.: Composites in the alumina-zirconia system: an engineering approach for an effective tailoring of microstructural features and performances. PhD Thesis, INSA de Lyon, 7 (2014)

  7. Soylemez, B., Sener, E., Yurdakul, A., Yurdakul, H.: Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition. Journal of Science: Advanced Materials and Devices. (2020). https://doi.org/10.1016/j.jsamd.2020.09.003

  8. Zang, S., He, N., Sun, X., Sun, M., Wu, W., Yang, H.: Influence of additives on the purity of tetragonal phase and grain size of ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP). Ceram. Int. 45, 394–400 (2019)

    Article  CAS  Google Scholar 

  9. Maji, A., Choubey, G.: Microstructure and mechanical properties of alumina toughened zirconia (ATZ). Materials Today: Proceedings. 5, 7457–7465 (2018)

    CAS  Google Scholar 

  10. Zhang, W., Bao, J., Jia, G., Guo, W., Song, X., An, S.: The effect of microstructure control on mechanical properties of 12Ce-TZP via two-step sintering method. J. Alloys Compd. 711, 686–692 (2017)

    Article  CAS  Google Scholar 

  11. Duwez, P., Odell, F.: Phase relationships in the system zirconia-ceria. J. Am. Ceram. Soc. 33, 274–283 (2006)

    Article  Google Scholar 

  12. Tsukuma, K., Shımada, M.: Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP). J. Mater. Sci. 20, 1178–1184 (1985)

    Article  CAS  Google Scholar 

  13. Tsai, J.F., Chon, U., Ramachandran, N., Shetty, D.K.: Transformation plasticity and toughening in CeO2-partially-stabilized zirconia-alumina (Ce-TZP/Al2O3) composites doped with MnO. J. Am. Ceram. Soc. 75, 1229–1238 (1992)

    Article  CAS  Google Scholar 

  14. Asadirad, M., Yoozbashizadeh, H.: Synthesis and characterization of Ce-TZP/Al2O3 nanocomposites prepared via aqueous combustion. J. Alloys Compd. 514, 150–156 (2012)

    Article  CAS  Google Scholar 

  15. Tsukuma, K., Takahata, T., Shiomi, M.: Strength and fracture toughness of Y-TZP, Ce-TZP, Y-TZP/Al2O3 and Ce-TZP/Al2O3. In: Yanagida, H. (ed.) Science and technology of zirconia III (advances in ceramics), pp. 721–728. The American Ceramic Society, Westerville (1988)

    Google Scholar 

  16. Cutler, R.A., Mayhew, R.J., Prettyman, K.M., Vırkar, A.V.: High-toughness Ce-TZP/Al2O3 ceramics with improved hardness and strength. J. Am. Ceram. Soc. 74, 179–186 (1991)

    Article  CAS  Google Scholar 

  17. Mıura, M., Hongoh, H., Yogo, T., Hırano, S., Fujll, T.: Formation of plate-like lanthanum-aluminate crystal in Ce-TZP matrix. J. Mater. Sci. 29, 262–268 (1994)

    Article  Google Scholar 

  18. Nawa, M., Nakamoto, S., Sekino, T., Niihara, K.: Tough and strong Ce-TZP/alumina nanocomposites doped with titania. Ceram. Int. 24, 497–506 (1998)

    Article  CAS  Google Scholar 

  19. Nawa, M., Bamba, N., Sekino, T., Niihara, K.: The effect of TiO2 addition on strengthening and toughening in intragranular type 12Ce-TZP/Al2O3 nanocomposites. J Eur Ceram. 18, 209–219 (1998)

    Article  CAS  Google Scholar 

  20. Tanaka, K., Tamura, J., Kawanabe, K., Nawa, M., Oka, M., Uchida, M., Kokubo, T., Nakamura, T.: Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res (Appl Biomater). 63(262–70), (2002)

  21. Aboushelib, M.N., Kleverlaan, C.J., Feilzer, A.J.: Evaluation of a high fracture toughness composite ceramic for dental applications. J. Prosthodont. 17, 538–544 (2008)

    Article  Google Scholar 

  22. Tanaka, K., Tamura, J., Kawanabe, K., Nawa, M., Uchida, M., Kokubo, T., Nakamura, T.: Phase stability after aging and its influence on pin-on-disk wear properties of Ce-TZP/Al2O3 nanocomposite and conventional Y-TZP. J. Biomed. Mater. Res. A. 67, 200–207 (2003)

    Article  Google Scholar 

  23. Ban, S., Sato, H., Suehiro, Y., Nakanishi, H., Nawa, M.: Biaxial flexure strength and low temperature degradation of Ce-TZP-Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res Part B Appl Biomater. 87, 492–498 (2008)

    Article  Google Scholar 

  24. Shiraishi, T., Watanabe, I.: Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications. Dent. Mater. 32, 660–667 (2016)

    Article  CAS  Google Scholar 

  25. Yu, C., Kim, Y.S., Kim, D., Grunlan, J.C.: Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 8, 4428–4432 (2008)

    Article  CAS  Google Scholar 

  26. Lin, Y., Liu, S., Peng, J., Liu, L.: Constructing a segregated graphene network in rubber composites towards improved electrically conductive and barrier properties. Compos. Sci. Technol. 131, 40–47 (2016)

    Article  CAS  Google Scholar 

  27. Ayas, E., Kara, A., Kara, F.: A novel approach for preparing electrically conductive α/β SiAlON-TiN composites by spark plasma sintering. J Ceram Soc Japan. 116, 812–814 (2008)

    Article  CAS  Google Scholar 

  28. Ayas, E., Kara, A.: Novel electrically conductive α–β SiAlON/TiCN composites. J. Eur. Ceram. Soc. 31, 903–911 (2011)

    Article  CAS  Google Scholar 

  29. Kaya, P., Gregori, G., Yordanov, P., Ayas, E., Habermeier, H.U., Maier, J., Turan, S.: An alternative composite approach to tailor the thermoelectric performance in SiAlON and SiC. J. Eur. Ceram. Soc. 37, 3367–3373 (2017)

    Article  CAS  Google Scholar 

  30. Selcuk, C.: Joining processes for powder metallurgy parts. In: Chang, I., Zhao, Y. (eds.) Advances in powder metallurgy properties, processing and applications, pp. 380–398. Woodhead Publishing (2013)

  31. Wampers, H.: High-performance ceramics for welding technology. Ceram. Forum. Int. 85, E40-E42+D25-D27 (2008)

  32. Krstic, V.: Method of making high toughness high strength zirconia bodies. United States Patent, US 0011661A1 (2014)

  33. Millan, R.T.S., Rodriguez, L.A.D.: Nanostructured composite material of stabilized zirconia with cerium oxide and doped alumina with zirconia, use, and procedure for obtaining same. United States Patent, US 8546285B2 (2013)

  34. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  35. Gibson, R.F.: Principles of composite material mechanics, 3rd edn. CRC Press Taylor and Francis Group, New York (2012)

    Google Scholar 

  36. Jenkins, R., Snyder, R.L.: Introduction to X-ray powder diffractometry. John Wiley & Sons, New York (1996)

    Book  Google Scholar 

  37. Ceylantekin, R.: Production of mono-anorthite phase through mechanical activation. Ceram. Int. 41, 353–361 (2015)

    Article  CAS  Google Scholar 

  38. Gates-Rector, S., Blanton, T.: The powder diffraction file: a quality materials characterization database. Powder Diffract. 34, 352–360 (2019)

    Article  CAS  Google Scholar 

  39. Cullity, B.D.: Elements of X-ray diffraction. Addison-Wesley, Massachusetts (1956)

    Google Scholar 

  40. Teufer, G.: The crystal structure of tetragonal ZrO2. Acta Cryst. 15, 1187 (1962)

    Article  CAS  Google Scholar 

  41. Pauling, L., Hendricks, S.B.: The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47, 781–790 (1925)

    Article  CAS  Google Scholar 

  42. Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle, ASTM B 962-17. ASTM International (2017)

  43. Standard test method for microindentation hardness of materials, ASTM E384–10. ASTM International (2010)

  44. Niihara, K., Morena, R., Hasselman, D.P.H.: Evaluation of Kıc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982)

    Article  CAS  Google Scholar 

  45. Niihara, K., Morena, R., Hasselman, D.P.H.: Fracture mechanics of ceramics. In: Bradt, R.C., Evans, A.G., Hasselman, D.P.H., Lange, F.F. (eds.), pp. 97. Plenum, New York (1983)

  46. Cottom, B.A., Mayo, M.J.: Fracture toughness of nanocrystalline ZrO2-3mol% Y2O3 determined by Vickers indentation. Scripta Metall Mater. 34, 809–814 (1996)

    Article  CAS  Google Scholar 

  47. Kaliszewski, M.S., Behrens, G., Heuer, A.H., Shaw, M.C., Marshall, D.B., Dransmanri, G.W., Steinbrech, R.W., Pajares, A., Guiberteau, F., Cumbrera, F.L., Dominguez-Rodriguez, A.: Indentation studies on Y2O2-stabilized ZrO2: I, Development of indentation-induced cracks. J. Am. Ceram. Soc. 77, 1185–1193 (1994)

    Article  CAS  Google Scholar 

  48. Pabst, W., Ticha, G., Gregorova, E.: Effective elastic properites of alumina-zirconia composite ceramics- part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data. Ceram Silik. 48, 41–48 (2004)

    CAS  Google Scholar 

  49. Kubota, Y., Ashizuka, M., Hokazono, H.: Elastic modulus and fracture toughness of CeO2-containing tetragonal zirconia polycrystals. J. Ceram. Soc. Jpn. 102, 175–179 (1994)

    Article  CAS  Google Scholar 

  50. Standard test method for flexural strength of advanced ceramics at ambient temperature, ASTM C1161–13. ASTM International (2013)

  51. Boutz, M.M.R., Winnubst, A.J.A., Burggraaf, A.J.: Yttria-ceria stabilized tetragonal zirconia polycrystals: sintering, grain growth and grain boundary segregation. J. Eur. Ceram. Soc. 13, 89–102 (1994)

    Article  CAS  Google Scholar 

  52. Matsui, K., Ohmichi, N., Ohgai, M., Yoshida, H., Ikuhara, Y.: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. 21, 2278–2289 (2006)

    Article  CAS  Google Scholar 

  53. Cailliet, S., Roumanie, M., Laucournet, R., Bernard-Granger, G.: Sintering Ce-TZP/alumina composites using aluminum isopropoxide as a precursor. Ceram. Int. 45, 10530–10540 (2019)

    Article  CAS  Google Scholar 

  54. Muroi, T., Echigoya, J.I., Suto, H.: Structure and phase diagram of ZrO2-CeO2 ceramics. Trans Jpn lnst Metals. 29, 634–641 (1988)

    Article  CAS  Google Scholar 

  55. Hannink, R., Swain, M.V.: Metastability of the martensitic transformation in a 12 mol % ceria-zirconia alloy: I, deformation and fracture observations. J Amer Ceram Soc. 72, 90–98 (1989)

    Article  Google Scholar 

  56. Annamalai, V.E., Gokularathnam, C.V., Krishnamurthy, R.: On the sintering behaviour of 12 mol % ceria-stabilized zirconia. J. Mater. Sci. Lett. 11, 642–644 (1992)

    Article  CAS  Google Scholar 

  57. Lee, J.-K., Kang, H.-H.: Ceria-stabilized zirconia ceramics with irregular grain shapes. Mater. Lett. 42, 215–220 (2000)

    Article  CAS  Google Scholar 

  58. Nawa, M., Nakanishi, H., Suehiro, Y.: ZrO2-Al2O3 composite ceramic material and production method therefor. United States Patent, US 7,928,028 B2 (2011)

  59. Zuo, F., Meng, F., Lin, D.T., Yu, J.J., Wang, H.J., Xu, S., Guo, W.M., Cerecedo, C., Valcarcel, V., Lin, H.T.: Influence of whisker-aspect-ratio on densification, microstructure and mechanical properties of Al2O3 whiskers-reinforced CeO2-stabilized ZrO2 composites. J. Eur. Ceram. Soc. 38, 1796–1801 (2018)

    Article  CAS  Google Scholar 

  60. Žmak, I., Ćorić, D., Mandić, V., Ćurković, L.: Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics. Materials. 13, 1–17 (2020)

    Google Scholar 

  61. Wang, J.S., Tsai, J.F., Shetty, D.K., Virkar, A.V.: Effect of MnO on the microstructures, phase stability, and mechanical properties of ceria-partially-stabilized zirconia (Ce-TZP) and Ce-TZP-Al2O3 composites. J. Mater. Res. 5, 1948–1957 (1990)

    Article  CAS  Google Scholar 

  62. Akkus, A., Boyraz, T.: Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods. J. Ceram. Process. Res. 19, 249–252 (2018)

    Google Scholar 

  63. Ghouli, S., Ayatollahi, M.R., Bushroa, A.R.: Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng. Fract. Mech. 199, 647–657 (2018)

    Article  Google Scholar 

  64. Abbas, S., Maleksaeedi, S., Kolos, E., Andrew, J.R.: Processing and properties of zirconia-toughened alumina prepared by gelcasting. Materials. 8, 4344–4362 (2015)

    Article  CAS  Google Scholar 

  65. Naga, S.M., Abdelbary, E.M., Awaad, M., El-Shaer, Y.I., Abd-Elwahab, H.S.: Effect of the preparation route on the mechanical properties of yttria-ceria doped tetragonal zirconia/alumina composites. Ceram. Int. 39, 1835–1840 (2013)

    Article  CAS  Google Scholar 

  66. Claussen, N.: Stress-induced transformation of tetragonal ZrO2 particles in ceramic matrices. J. Am. Ceram. Soc. 61, 85–86 (1978)

    Article  CAS  Google Scholar 

  67. Danilenko, I., Konstantinova, T., Volkova, G., Burkhovetski, V., Glazunova, V.: The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount. J Ceram Sci Technol. 6, 191–200 (2015)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Associate Professor Dr. Hilmi Yurdakul for allowing the Teknoceram Co. (Kutahya, Turkey) infrastructure to be used for ceramic bushing production. The author also wishes to express her sincere gratitude to Professor Dr. Servet Turan (Eskisehir Technical University, Turkey) for providing the opportunity to use electron microscopy and mechanical test facilities. The author would like to also thank the Kutahya Dumlupinar University Advanced Technologies Research Center (DPU-ILTEM) for UHR-SEM examinations, Associate Professor Dr. Rasim Ceylantekin (DPU, Kutahya/Turkey) for his invaluable support on the XRD Rietveld refinement analyses, and Research Assistant Ercan Sener (Alanya Alaaddin Keykubat University, Alanya-Antalya/Turkey) for data processing.

Funding

This study was funded by Alanya Alaaddin Keykubat University (ALKÜ) Scientific Research Projects Unit (BAP) with the Project No: 2018-02-03-MAP01.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. carried out the study and wrote the paper completely.

Corresponding author

Correspondence to Arife Yurdakul.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Code availability

The author declares that all data of present study are available in the article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurdakul, A. Microstructural and mechanical characterization of ceria-stabilized tetragonal zirconia/alumina composites produced through a segregated-network approach for ceramic bushing applications. J Aust Ceram Soc 57, 379–398 (2021). https://doi.org/10.1007/s41779-020-00558-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00558-x

Keywords

Navigation