Skip to main content

Advertisement

Log in

Polyethylene glycol fumarate/acrylated-silica nanocomposite: synthesis, characterization and in-vitro evaluation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To make potential the biodegradable polyethylene glycol (PEGO) toward photocrosslinking, it was cooligomerized with fumaryl chloride by esterification reaction. The obtained viscous liquid injectable macromere, OPEGF, was characterized by FTIR and GPC. In another reaction, nanosilica was treated with acryloyl chloride to obtain silica-AC nanopowder and subsequently dispersed in the OPEGO matrix in 1 and 2 wt.% in the presence of either 1,4-butanediol dimethacrylate (BDM) or 1,12-dodecanediol dimethacrylate (DDM) as reactive diluent. The obtained slurries were photocured by blue light irradiation and the characteristics of prepared nanocomposites as well as crosslinked OPEGF were studied via XRD, TEM, tensile, equilibrium swelling and cell culture tests. XRD patterns revealed amorphous nature of all samples. TEM and Si mapping pictures demonstrated good dispersion of silica-AC at nano level (particle size of 20–30nm) in the fabricated samples. Tensile test disclosed a noticeable improvement in mechanical properties of the nanocomposites by increasing in nanofiller level. Equilibrium swelling study revealed that the presence of nanosilica and reactive diluent improved the crosslinking phenomenon. Finally, cell culture test evidenced higher biocompatibility of the samples containing silica-AC nanofiller and BDM reactive diluent. As the consequence of employed tests, designed nanocomposites can be considered as capable candidates for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mirmohammadi SA, Nekoomanesh-Haghighi M, Mohammadian Gezaz S, Bahri-Laleh N (2016) Polybutadiene/polyhedral oligomeric silsesquioxane nanohybrid: investigation of various reactants in polyesterification reaction. Polym Int 65(5):516–525. https://doi.org/10.1002/pi.5085

    Article  CAS  Google Scholar 

  2. Mirmohammadi SA, Imani M, Uyama H, Atai M, Teimouri MB, Bahri-Lale N (2014) The effects of solvent and initiator on anionic ring opening polymerization of ϵ-caprolactone: synthesis and characterization. Polym Int 63(3):479–485. https://doi.org/10.1002/pi.4531

    Article  CAS  Google Scholar 

  3. Mirmohammadi SA, Imani M, Uyama H, Atai M (2014) Hybrid Organic-Inorganic Nanocomposites Based on Poly(E-Caprolactone)/Polyhedral Oligomeric Silsesquioxane: Synthesis and In Vitro Evaluations. Int J Polym Mater Polym Biomater 63(12):624–631. https://doi.org/10.1080/00914037.2013.854236

    Article  CAS  Google Scholar 

  4. Mirmohammadi S, Imani M, Uyama H, Atai M (2013) In situ photocrosslinkable nanohybrids based on poly(E-caprolactone fumarate)/polyhedral oligomeric silsesquioxane: synthesis and characterization. J Polym Res 20(12):1–13. https://doi.org/10.1007/s10965-013-0297-z

    Article  CAS  Google Scholar 

  5. Jabbari E, He X, Valarmathi MT, Sarvestani AS, Xu W (2009) Material properties and bone marrow stromal cells response to In situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J Biomed Mater Res A 89A(1):124–137. https://doi.org/10.1002/jbm.a.31936

    Article  CAS  Google Scholar 

  6. Kempen DHR, Lu L, Zhu X, Kim C, Jabbari E, Dhert WJA, Currier BL, Yaszemski MJ (2004) Development of biodegradable poly(propylene fumarate)/poly(lactic-co-glycolic acid) blend microspheres. II. Controlled drug release and microsphere degradation. J Biomed Mater Res A 70A (2):293–302. https://doi.org/10.1002/jbm.a.30080

  7. Mohammadi Y, Jabbari E (2006) Monte Carlo Simulation of Degradation of Porous Poly(lactide) Scaffolds, 1. Macromol Theor Simul 15(9):643–653. https://doi.org/10.1002/mats.200600036

    Article  CAS  Google Scholar 

  8. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G, Cavallo L (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114. https://doi.org/10.1016/j.progpolymsci.2018.06.005

    Article  CAS  Google Scholar 

  9. Moeinzadeh S, Khorasani SN, Ma J, He X, Jabbari E (2011) Synthesis and gelation characteristics of photo-crosslinkable star Poly(ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer 52(18):3887–3896. https://doi.org/10.1016/j.polymer.2011.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharifi S, Mirzadeh H, Imani M, Rong Z, Jamshidi A, Shokrgozar M, Atai M, Roohpour N (2009) Injectable in situ forming drug delivery system based on poly(ε-caprolactone fumarate) for tamoxifen citrate delivery: Gelation characteristics, in vitro drug release and anti-cancer evaluation. Acta Biomater 5(6):1966–1978. https://doi.org/10.1016/j.actbio.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Sharifi S, Mirzadeh H, Imani M, Ziaee F, Tajabadi M, Jamshidi A, Atai M (2008) Synthesis, photocrosslinking characteristics, and biocompatibility evaluation of N-vinyl pyrrolidone/polycaprolactone fumarate biomaterials using a new proton scavenger. Polym Adv Technol 19(12):1828–1838. https://doi.org/10.1002/pat.1207

    Article  CAS  Google Scholar 

  12. Doulabi ASH, Mirzadeh H, Imani M, Sharifi S, Atai M, Mehdipour-Ataei S (2008) Synthesis and preparation of biodegradable and visible light crosslinkable unsaturated fumarate-based networks for biomedical applications. Polym Advan Technol 19(9):1199–1208. https://doi.org/10.1002/pat.1112

    Article  CAS  Google Scholar 

  13. Hwang J-Z, Wang S-C, Chen P-C, Huang C-Y, Yeh J-T, Chen K-N (2012) A new UV-curable PU resin obtained through a nonisocyanate process and used as a hydrophilic textile treatment. J Polym Res 19(8):9900. https://doi.org/10.1007/s10965-012-9900-y

    Article  CAS  Google Scholar 

  14. Jeemol PA, Mathew S, Nair CPR (2020) Maleimide end- capped polyether telechelics as novel toughening agents for unsaturated polyester resin. J Polym Res 27(10):300. https://doi.org/10.1007/s10965-020-02197-z

    Article  CAS  Google Scholar 

  15. Alosime EM (2019) A review on Copoly(ether-ester) elastomers: degradation and stabilization. J Polym Res 26(12):293. https://doi.org/10.1007/s10965-019-1913-3

    Article  CAS  Google Scholar 

  16. Hanifpour A, Bahri-Laleh N, Mirmohammadi SA (2019) Silica-grafted poly1-hexene: A new approach to prepare polyethylene/silica nanocomposites. Polym Composite 40(3):1053–1060. https://doi.org/10.1002/pc.24795

    Article  CAS  Google Scholar 

  17. Bahri-Laleh N, Didehban K, Yarahmadi E, Mirmohammadi SA, Wang G (2018) Microwave Absorption Properties of Polyaniline/Carbonyl Iron Composites. Silicon 10(4):1337–1343. https://doi.org/10.1007/s12633-017-9609-y

    Article  CAS  Google Scholar 

  18. Didehban K, Yarahmadi E, Nouri-Ahangarani F, Mirmohammadi SA, Bahri-Laleh N (2015) Radar Absorption Properties of Ni0.5Zn0.5Fe2O4/PANI/epoxy Nanocomposites. J Chin Chem Soc 62 (9):826–831. https://doi.org/10.1002/jccs.201500136

  19. Lai S-M, Guo G-L, Xie Y-C, Chen J-M, Xu D-Y, Wei Y-E, Cao Z-R (2020) A novel multi-triggered natural rubber (NR)/beeswax (BW)/carbon nanotube (CNT) shape memory bio-nanocomposite. J Polym Res 27(9):283. https://doi.org/10.1007/s10965-020-02256-5

    Article  CAS  Google Scholar 

  20. Bibi S, Nawaz M, Yasin T, Riaz M (2016) Chitosan/CNTs nanocomposite as green carrier material for pesticides controlled release. J Polym Res 23(8):154. https://doi.org/10.1007/s10965-016-1055-9

    Article  CAS  Google Scholar 

  21. Palem RR, Shimoga G, Rao KSVK, Lee S-H, Kang TJ (2020) Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. J Polym Res 27(3):68. https://doi.org/10.1007/s10965-020-2026-8

    Article  CAS  Google Scholar 

  22. Ahmadi E, Mohamadnia Z, Rahimi S, Armanmehr MH, Heydari MH, Razmjoo M (2016) Phillips catalysts synthesized over various silica supports: Characterization and their catalytic evaluation in ethylene polymerization. Polyolefins J 3(1):23–36. https://doi.org/10.22063/poj.2016.1268

    Article  CAS  Google Scholar 

  23. Zhu L, He X, Cheng R, Liu Z, Zhao N, Liu B (2018) Effects of Ti/Mg molar ratio on bi-supported SiO2/MgCl2 (ethoxide type)/TiCl4 catalysts in ethylene homopolymerization and ethylene/1-hexene copolymerization. Polyolefins J 5(1):1–13. https://doi.org/10.22063/poj.2017.1470

    Article  CAS  Google Scholar 

  24. Cheng Z, Shan H, Sun Y, Zhang L, Jiang H, Li C (2020) Evolution mechanism of surface hydroxyl groups of silica during heat treatment. Appl Surf Sci 513:145766. https://doi.org/10.1016/j.apsusc.2020.145766

    Article  CAS  Google Scholar 

  25. Mirmohammadi SA, Nekoomanesh-Haghighi M, Mohammadian Gezaz S, Bahri-Laleh N, Atai M (2016) In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane. Mater Sci Eng C 68:530–539. https://doi.org/10.1016/j.msec.2016.06.027

    Article  CAS  Google Scholar 

  26. Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280. https://doi.org/10.2174/156802608783790901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salakhieva D, Shevchenko V, Németh C, Gyarmati B, Szilágyi A, Abdullin T (2017) Structure–biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Int J Pharmaceut 517(1):234–246. https://doi.org/10.1016/j.ijpharm.2016.12.007

    Article  CAS  Google Scholar 

  28. Misra SK, Chang H-H, Mukherjee P, Tiwari S, Ohoka A, Pan D (2015) Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities. Sci Rep 5(1):14986. https://doi.org/10.1038/srep14986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dehghani S, Hanifpour A, Nekoomanesh-Haghighi M, Sadjadi S, Mirmohammadi SA, Farhadi A, Bahri-Laleh N (2020) Highly efficient supported AlCl3-based cationic catalysts to produce polyα-olefin oil base stocks. J Appl Polym Sci 137(22):49018. https://doi.org/10.1002/app.49018

    Article  CAS  Google Scholar 

  30. Yuvakkumar R, Elango V, Rajendran V, Kannan N (2014) High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci 9(3):272–281. https://doi.org/10.1080/17458080.2012.656709

    Article  CAS  Google Scholar 

  31. Moosa AA, Saddam BF (2017) Synthesis and Characterization of Nanosilica from Rice Husk with Applications to Polymer Composites. Am J Mater Sci 7(6):223–231

    Google Scholar 

  32. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Karimi M (2017) Synthesis and characterization of poly1-hexene/silica nanocomposites. Polym Test 61:27–34. https://doi.org/10.1016/j.polymertesting.2017.05.002

    Article  CAS  Google Scholar 

  33. Hedayati F, Moshiri-Gomchi N, Assaran-Ghomi M, Sabahi S, Bahri-Laleh N, Mehdipour-Ataei S, Mokhtari-Aliabad J, Mirmohammadi SA (2020) Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polym Adv Technol 31(3):566–573. https://doi.org/10.1002/pat.4797

    Article  CAS  Google Scholar 

  34. Nazari D, Bahri-Laleh N, Nekoomanesh-Haghighi M, Jalilian SM, Rezaie R, Mirmohammadi SA (2018) New high impact polystyrene: Use of poly(1-hexene) and poly(1-hexene-co-hexadiene) as impact modifiers. Polym Adv Technol 29(6):1603–1612. https://doi.org/10.1002/pat.4265

    Article  CAS  Google Scholar 

  35. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, Mirmohammadi SA (2016) Poly1-hexene: New impact modifier in HIPS technology. J Appl Polym Sci 133(35):8508. https://doi.org/10.1002/app.43882

    Article  CAS  Google Scholar 

  36. Özdemir C, Güner A (2007) Solubility profiles of poly(ethylene glycol)/solvent systems, I: Qualitative comparison of solubility parameter approaches. Eur Polymer J 43(7):3068–3093. https://doi.org/10.1016/j.eurpolymj.2007.02.022

    Article  CAS  Google Scholar 

  37. Pertile RAN, Andrade FK, Alves C Jr, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohyd Polym 82(3):692–698. https://doi.org/10.1016/j.carbpol.2010.05.037

    Article  CAS  Google Scholar 

  38. Pan A, Yang S, He L, Zhao X (2014) Star-shaped POSS diblock copolymers and their self-assembled films. RSC Adv 4(53):27857–27866. https://doi.org/10.1039/C4RA03337J

    Article  CAS  Google Scholar 

  39. Gümüşderelioğlu M, Betül Kaya F, Beşkardeş IG (2011) Comparison of epithelial and fibroblastic cell behavior on nano/micro-topographic PCL membranes produced by crystallinity control. J Colloid Interface Sci 358(2):444–453. https://doi.org/10.1016/j.jcis.2011.03.026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amin Mirmohammadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 948 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrough, P., Bahri-Laleh, N., Hedayati-Moghaddam, A. et al. Polyethylene glycol fumarate/acrylated-silica nanocomposite: synthesis, characterization and in-vitro evaluation. J Polym Res 28, 16 (2021). https://doi.org/10.1007/s10965-020-02399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02399-5

Keywords

Navigation