Skip to main content

Advertisement

Log in

A polyethylene glycol (PEG) – polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) polymer blend mixed matrix membrane for CO2/N2 separation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Recently, carbon capture utilizing membrane technology has received much attention to limit the adverse effect caused by rising carbon dioxide (CO2) concentration in the atmosphere as they are less energy intensive and more environmentally friendly. Among the type of membranes, mixed matrix membranes (MMMs) has shown promising gas separation results. In this study, polymer blend MMMs were fabricated using polyethylene glycol (PEG), polyethersulfone (PES), multi-walled carbon nanotubes (MWCNTs) and solvent N,N-dimethylformamide (DMF) using wet phase-inversion technique. Results shown that functionalized MWCNTs (MWCNTs-F) were able to enhance gas separation performance of MMM. Furthermore, the effect of MWCNTs-F loading (0.005 wt% to 0.03 wt%) and polymer composition (PEG-PES weight ratio of 20:20, 30:10 and 32:8) were also studied. Results shown both parameters affect the gas separation performance of MMMs. The best performance in term of CO2/Nitrogen (N2) selectivity is found to be 1.235 ± 0.002 for MMM fabricated with 30 wt% PEG, 10 wt% PES and 0.02 wt% MWCNTs-F. In addition, MMM synthesized with PEG-PES weight ratio of 20:20 can withstand a pressure of 1.2 bar, indicating high mechanical strength. Hence, it is applicable in the post combustion carbon capture industry as typical flue gas has a pressure of 1.01 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ATR-FTIR:

Attenuated total reflectance fourier transform infrared

CNTs:

Carbon nanotubes

CO2 :

Carbon dioxide

DMF:

N,N-dimethylformamide

MMM:

Mixed matrix membrane

MMMs:

Mixed matrix membranes

MWCNTs:

Multi-walled carbon nanotubes

MWCNTs-F:

Functionalized multi-walled carbon nanotubes

N2 :

Nitrogen

PEG:

Polyethylene glycol

PES:

Polyethersulfone

SEM:

Scanning Electron Microscopy

TEM:

Transmission Electron Microscopy

β-CD:

Beta-cyclodextrin

References

  1. Songolzadeh M, Soleimani M, Takht Ravanchi M, Songolzadeh R et al (2014) Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions Sci World J. https://doi.org/10.1155/2014/828131

  2. Creamer AE, Gao B (2016) Carbon-based adsorbents for postcombustion CO 2 capture: A critical review. Environ Sci Technol 50(14):7276–7289. https://doi.org/10.1021/acs.est.6b00627

    Article  CAS  PubMed  Google Scholar 

  3. He X (2018) A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sustain Soc 8(1):1–14. https://doi.org/10.1186/s13705-018-0177-9

    Article  Google Scholar 

  4. Hamid MRA, Jeong H-K (2018) Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean J Chem Eng 35(8):1577–1600. https://doi.org/10.1007/s11814-018-0081-1

    Article  CAS  Google Scholar 

  5. Akbarian I, Fakhar A, Ameri E, Sadeghi M et al (2018) Gas-separation behavior of poly(ether sulfone)–poly(ethylene glycol) blend membranes. J Appl Polym Sci 135(44):46845. https://doi.org/10.1002/app.46845

    Article  CAS  Google Scholar 

  6. Low BT, Zhao L, Merkel TC, Weber M, Stolten D et al (2013) A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J Membrane Sci 431:139–155. https://doi.org/10.1016/j.memsci.2012.12.014

    Article  CAS  Google Scholar 

  7. Liu J, Hou X, Park HB, Lin H et al (2016) High-Performance Polymers for Membrane CO2/N2 Separation. Chemistry 22(45):15980–15990. https://doi.org/10.1002/chem.201603002

    Article  CAS  PubMed  Google Scholar 

  8. Hadi SHAA, Mannan HA, Mukhtar H, Shaharun MS, Murugesan T et al (2016) Morphological analysis of Polyethersulfone/polyvinyl Acetate blend membrane synthesized at various polymer concentrations. Paper presented at the IOP Conf. Ser. Earth Environ, Sci

    Book  Google Scholar 

  9. Naderi A, Yong WF, Xiao Y, Chung T-S, Weber M, Maletzko C et al (2018) Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer 135:76–84. https://doi.org/10.1016/j.polymer.2017.12.014

    Article  CAS  Google Scholar 

  10. Mohamed MG, Kuo SW et al (2019) Functional Silica and Carbon Nanocomposites Based on Polybenzoxazines. Macromol Chem Phys 220 (1):1800306-n/a. https://doi.org/10.1002/macp.201800306

  11. Samy MM, Mohamed MG, Kuo S-W et al (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Compos Sci Technol 199:108360. https://doi.org/10.1016/j.compscitech.2020.108360

    Article  CAS  Google Scholar 

  12. Ahmad AL, Jawad ZA, Low SC, Zein SHS et al (2014) A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation. J Membrane Sci 451:55–66. https://doi.org/10.1016/j.memsci.2013.09.043

    Article  CAS  Google Scholar 

  13. Sun H, Wang T, Xu Y, Gao W, Li P, Niu QJ et al (2017) Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO2 separation. Sep Purif Technol 177:327–336. https://doi.org/10.1016/j.seppur.2017.01.015

    Article  CAS  Google Scholar 

  14. Zhao N, Liu T, Liu Z, Su Y, Yu H, Ma J, Yang Y, Jiang Z et al (2017) Synthesis and properties of sulfonated biphenyl poly(ether sulfone) and its mixed‐matrix membranes containing carbon nanotubes for gas separation. J Appl Polym Sci 134 (29). https://doi.org/10.1002/app.44995

  15. Ismail AF, Rahim NH, Mustafa A, Matsuura T, Ng BC, Abdullah S, Hashemifard SA et al (2011) Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep Purif Technol 80(1):20–31. https://doi.org/10.1016/j.seppur.2011.03.031

    Article  CAS  Google Scholar 

  16. Chen J, Dyer MJ, Yu MF et al (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123(25):6201. https://doi.org/10.1021/ja015766t

    Article  CAS  PubMed  Google Scholar 

  17. Lee RJ, Jawad ZA, Ahmad AL, Chua HB et al (2018) Incorporation of functionalized multi-walled carbon nanotubes (MWCNTs) into cellulose acetate butyrate (CAB) polymeric matrix to improve the CO2/N2 separation. Process Saf Environ 117:159–167. https://doi.org/10.1016/j.psep.2018.04.021

    Article  CAS  Google Scholar 

  18. Ahmad AL, Jawad ZA, Low SC, Zein SHS et al (2013) The Functionalization of Beta-Cyclodextrins on Multi Walled Carbon Nanotubes: Effects of the Dispersant and Non Aqueous Media. Curr Nanosci 9(1):93–102. https://doi.org/10.2174/1573413711309010015

    Article  CAS  Google Scholar 

  19. Aroon MA, Ismail AF, Matsuura T et al (2013) Beta-cyclodextrin functionalized MWCNT: A potential nano-membrane material for mixed matrix gas separation membranes development. Beta-cyclodextrin functionalized MWCNT: A potential nano-membrane material for mixed matrix gas separation membranes development 115:39–50

    CAS  Google Scholar 

  20. Alenazi AN, Hussein AM, Alamry AK, Asiri MA et al (2018) Nanocomposite-Based Aminated Polyethersulfone and Carboxylate Activated Carbon for Environmental Application. A Real Sample Analysis. C 4 (2). https://doi.org/10.3390/c4020030

  21. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ et al (2014) Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 6(1):93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  22. He Y, Xu Z, Yang Q, Wu F, Liang L et al (2015) Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility. J Nanopart Res 17(1):1–10. https://doi.org/10.1007/s11051-015-2866-z

    Article  CAS  Google Scholar 

  23. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  24. Guillen GR, Pan Y, Li M, Hoek EMV et al (2011) Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind Eng Chem Res 50(7):3798–3817. https://doi.org/10.1021/ie101928r

    Article  CAS  Google Scholar 

  25. Guillen GR, Ramon GZ, Pirouzkavehpour H, Kaner RB, Hoek EMV et al (2013) Direct Microscopic Observation of Membrane Formation by Nonsolvent Induced Phase Separation. J Membrane Sci 431:212–220. https://doi.org/10.1016/j.memsci.2012.12.031

    Article  CAS  Google Scholar 

  26. Khorsand-Ghayeni M, Barzin J, Zandi M, Kowsari M et al (2017) Fabrication of asymmetric and symmetric membranes based on PES/PEG/DMAc. Polym Bull 74(6):2081–2097. https://doi.org/10.1007/s00289-016-1823-z

    Article  CAS  Google Scholar 

  27. Khan M, Filiz V, Bengtson G, Shishatskiy S, Rahman M, Abetz V et al (2012) Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res Lett 7(1):1–12. https://doi.org/10.1186/1556-276X-7-504

    Article  CAS  Google Scholar 

  28. Wong KC, Goh PS, Ismail AF et al (2018) Carbon-Based Nanocomposite Membrane for Acidic Gas Separation. In: Ismail AF, Goh PS (eds) Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications. Elsevier, pp 233–260. https://doi.org/10.1016/B978-0-12-813574-7.00010-1

  29. Aroon MA, Ismail AF, Montazer-Rahmati MM, Matsuura T et al (2010) Effect of Raw Multi-Wall Carbon Nanotubes on Morphology and Separation Properties of Polyimide Membranes. Sep Sci Technol 45(16):2287–2297. https://doi.org/10.1080/01496395.2010.484007

    Article  CAS  Google Scholar 

  30. Ge L, Zhu Z, Rudolph V et al (2011) Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Sep Purif Technol 78(1):76–82. https://doi.org/10.1016/j.seppur.2011.01.024

    Article  CAS  Google Scholar 

  31. Neoh T-L, Yoshii H, Furuta T et al (2006) Encapsulation and Release Characteristics of Carbon Dioxide in α-Cyclodextrin. J Incl Phenom Macrocycl Chem 56(1):125–133. https://doi.org/10.1007/s10847-006-9073-6

    Article  CAS  Google Scholar 

  32. Narayanan G, Shen J, Boy R, Gupta BS, Tonelli AE et al (2018) Aliphatic Polyester Nanofibers Functionalized with Cyclodextrins and Cyclodextrin-Guest Inclusion Complexes. Polymers 10(4):428. https://doi.org/10.3390/polym10040428

    Article  CAS  PubMed Central  Google Scholar 

  33. Shimekit B, Mohd Shariff A, Mukhtar H, Bustam MA, Elkhalifah AEI, Ullah S, Riaz N et al (2014) Interfacial Defects on Mixed Matrix Membranes and Mitigation Techniques for Gas Separation: A Review. Appl Mech Mater 625(3):653–656. https://doi.org/10.4028/www.scientific.net/AMM.625.653

    Article  CAS  Google Scholar 

  34. Liu X, Liu H, Li P et al (2017) Effect of Polymer Dope Concentration on the Morphology and Performance of PES/PDMS Hollow Fiber Composite Membrane for Gas Separation. Juniper Online J Mater Sci 1 (5):555573. https://doi.org/10.19080/JOJMS.2017.01.555573

  35. Ding C, Yin J, Deng B et al (2014) Effects of Polysulfone (PSf) Support Layer on the Performance of Thin-Film Composite (TFC) Membranes. J Chem Proc Eng 1:1–8

    Google Scholar 

  36. Ma Y, Shi F, Ma J, Wu M, Zhang J, Gao C et al (2011) Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination 272(1):51–58. https://doi.org/10.1016/j.desal.2010.12.054

    Article  CAS  Google Scholar 

  37. Moli Z, Liming D, Dongxiao X, Bing C, Seyed Saeid H, Pei L et al (2019) Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes 7(1):51. https://doi.org/10.3390/pr7010051

    Article  CAS  Google Scholar 

  38. Lasseuguette E, Malpass-Evans R, Carta M, McKeown NB, Ferrari M-C et al (2018) Temperature and Pressure Dependence of Gas Permeation in a Microporous Tröger’s Base Polymer. Membranes 8(4):132. https://doi.org/10.3390/membranes8040132

    Article  CAS  PubMed Central  Google Scholar 

  39. Fam W, Mansouri J, Li H, Chen V et al (2017) Improving CO2 separation performance of thin film composite hollow fiber with Pebax®1657/ionic liquid gel membranes. J Membrane Sci 537:54–68. https://doi.org/10.1016/j.memsci.2017.05.011

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Ministry of Higher Education Malaysia (MOHE) for providing Fundamental Research Grant Scheme (FRGS) (MOHE Ref No: FRGS/1/2015/TK02/CURTIN/03/01) and Cost Centre: 001048. The authors would also extend their appreciation to LRGS USM (Account No: 304/PJKIMIA/6050296/U124) and Curtin Cost Centre: 001047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Abbas Jawad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K., Jawad, Z.A. & Chin, B.L.F. A polyethylene glycol (PEG) – polyethersulfone (PES)/multi-walled carbon nanotubes (MWCNTs) polymer blend mixed matrix membrane for CO2/N2 separation. J Polym Res 28, 6 (2021). https://doi.org/10.1007/s10965-020-02361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02361-5

Keywords

Navigation