Skip to main content
Log in

Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer micelles obtained from amphiphilic copolymers have emerged as promising drug vehicles given their nanometric size, simple release, and encapsulation mechanisms. Nevertheless, their lack of functional groups that interact with the drugs causes low encapsulation capacities. In this paper, the synthesis of an amphiphilic copolymer composed of polyethylene glycol and a poly(ester-co-carbonate) segment containing alkyne groups, as well as its coupling in a post-synthesis stage with other azido-functionalized substances through click reaction, is reported. The modifiers can be intentionally selected to favor polymer–drug compatibility for the rational development of drug delivery systems. Herein, amphotericin B was taken as a model because it is a water-insoluble and highly toxic drug. Cholesterol and oleic acid were employed as modifiers of the copolymers and provided improvements on the drug loading capacity compared with an unmodified copolymer. While oleic acid modified structures presented the highest encapsulation when five units were grafted; a single cholesterol molecule gave the highest enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159(3):312–323

    Article  CAS  PubMed  Google Scholar 

  2. Movassaghian S, Merkel OM, Torchilin VP (2015) Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(5):691–707

    Article  CAS  PubMed  Google Scholar 

  3. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M, Miyazono K, Uesaka M (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815

    Article  CAS  PubMed  Google Scholar 

  5. Yoon H-J, Jang W-D (2010) Polymeric supramolecular systems for drug delivery. J of Mater Chem 20(2):211–222

    Article  CAS  Google Scholar 

  6. Kore G, Kolate A, Nej A, Misra A (2014) Polymeric micelle as multifunctional pharmaceutical carriers. J Nanosci Nanotechnol 14(1):288–307

    Article  CAS  PubMed  Google Scholar 

  7. Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, De Grossi S, Riccioli A, Amenitsch H, Laganà A (2014) Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6(5):2782–2792

    Article  CAS  PubMed  Google Scholar 

  8. Lavasanifar A, Samuel J, Sattari S, Kwon GS (2002) Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res 19(4):418–422

    Article  CAS  PubMed  Google Scholar 

  9. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  10. Liu J, Zeng F, Allen C (2007) In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm 65(3):309–319

    Article  CAS  PubMed  Google Scholar 

  11. Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, Shen Y (2018) The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS nano 12(6):6179–6192

    Article  CAS  PubMed  Google Scholar 

  12. Kasimova AO, Pavan GM, Danani A, Mondon K, Cristiani A, Scapozza L, Gurny R, Möller M (2012) Validation of a Novel Molecular Dynamics Simulation Approach for Lipophilic Drug Incorporation into Polymer Micelles. J Phys Chem B 116(14):4338–4345

    Article  CAS  PubMed  Google Scholar 

  13. Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R (2019) Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultrahigh Drug-Loaded Polymer Micelles. Biomacromolecules 20(8):3041–3056

    Article  PubMed  Google Scholar 

  14. Hwang D, Ramsey JD, Makita N, Sachse C, Jordan R, Sokolsky-Papkov M, Kabanov AV (2019) Novel poly(2-oxazoline) block copolymer with aromatic heterocyclic side chains as a drug delivery platform. J Control Release 307:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Angarita AV, Umaña-Perez A, Perez LD (2020) Enhancing the performance of PEG-b-PCL-based nanocarriers for curcumin through its conjugation with lipophilic biomolecules. J Bioact Compat Polym :0883911520944416

  16. Das S, Devarajan PV (2020) Enhancing safety and efficacy by altering the toxic aggregated state of Amphotericin B in lipidic nanoformulations. Mol Pharm 17(6):2186–2195

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez YJ, Quejada LF, Villamil JC, Baena Y, Parra-Giraldo CM, Perez LD (2020) Development of amphotericin B micellar formulations based on copolymers of poly (ethylene glycol) and poly (ε-caprolactone) conjugated with retinol. Pharmaceutics 12(3):196

    Article  CAS  PubMed Central  Google Scholar 

  18. Villamil JC, Parra-Giraldo CM, Pérez LD (2019) Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids Surf A Physicochem Eng Asp 572:79–87

    Article  CAS  Google Scholar 

  19. Balcı M, Allı A, Hazer B, Güven O, Cavicchi K, Cakmak M (2010) Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol. Polym Bull 64(7):691–705

    Article  Google Scholar 

  20. Kolb HC, Finn M, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  21. Lecomte P, Riva R, Jérôme C, Jérôme R (2008) Macromolecular Engineering of Biodegradable Polyesters by Ring-Opening Polymerization and ‘Click’Chemistry. Macromol Rapid Commun 29(12–13):982–997

    Article  CAS  Google Scholar 

  22. Mespouille L, Vachaudez M, Suriano F, Gerbaux P, Van Camp W, Coulembier O, Degée P, Flammang R, Du Prez F, Dubois P (2008) Controlled synthesis of amphiphilic block copolymers based on polyester and poly (amino methacrylate): Comprehensive study of reaction mechanisms. React Funct Polym 68(5):990–1003

    Article  CAS  Google Scholar 

  23. Şanal T, Koçak İ, Hazer B (2017) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull 74(4):977–995

    Article  Google Scholar 

  24. Saravolatz LD, Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: Time for a New “Gold Standard.” Clin Infect Dis 37(3):415–425

    Article  Google Scholar 

  25. Sarosi GA (1990) Amphotericin B. Still the 'gold standard' for antifungal therapy. Postgrad Med 88 (1):151-152, 155-161, 165-156

  26. Calvo B, Melo ASA, Perozo-Mena A, Hernandez M, Francisco EC, Hagen F, Meis JF, Colombo AL (2016) First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. J Infect 73(4):369–374

    Article  PubMed  Google Scholar 

  27. Bates D, Su L, Yu D, Chertow G, Seger D, Gomes D, Dasbach E, Platt R (2001) Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 32(5):686–693

    Article  CAS  PubMed  Google Scholar 

  28. Barwicz J, Christian S, Gruda I (1992) Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother 36(10):2310–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jensen G, Skenes C, Bunch T, Weissman C, Amirghahari N, Satorius A, Moynihan K, Eley C (1999) Determination of the relative toxicity of amphotericin B formulations: a red blood cell potassium release assay. Drug Deliv 6(2):81–88

    Article  CAS  Google Scholar 

  30. Diaz IL, Sierra CA, Jérôme V, Freitag R, Perez LD (2020) Target grafting of poly(2-(dimethylamino)ethyl methacrylate) to biodegradable block copolymers. J Polym Sci 58(16):2168–2180

    Article  CAS  Google Scholar 

  31. Diaz IL, Perez LD (2015) Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers. Colloid Polym Sci 293(3):913–923

    Article  CAS  Google Scholar 

  32. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A (2017) Nanoprecipitation process: From encapsulation to drug delivery. Int J Pharm 532(1):66–81

    Article  PubMed  Google Scholar 

  33. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y-J, Fang H-J, Hsu SCN, Jheng N-Y, Chang H-C, Ou S-W, Peng W-T, Lai Y-C, Chen J-Y, Chen P-L, Kao C-H, Zeng Z-X, Chen J-L, Chen H-Y (2013) Improving the ring-opening polymerization of ε-caprolactone and l-lactide using stannous octanoate. Polym Bull 70(3):993–1001

    Article  CAS  Google Scholar 

  35. Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polym Int 54(1):36–46

    Article  CAS  Google Scholar 

  36. Glavas L, Olsén P, Odelius K, Albertsson A-C (2013) Achieving micelle control through core crystallinity. Biomacromolecules 14(11):4150–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gou J, Feng S, Xu H, Fang G, Chao Y, Zhang Y, Xu H, Tang X (2015) Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances. Biomacromolecules 16(9):2920–2929

    Article  CAS  PubMed  Google Scholar 

  38. He C, Sun J, Deng C, Zhao T, Deng M, Chen X, Jing X (2004) Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock Copolymers. Biomacromolecules 5(5):2042–2047

    Article  CAS  PubMed  Google Scholar 

  39. Topel Ö, Çakır BA, Budama L, Hoda N (2013) Determination of critical micelle concentration of polybutadiene-block-poly (ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 177:40–43

    Article  CAS  Google Scholar 

  40. Patist A, Bhagwat S, Penfield K, Aikens P, Shah D (2000) On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactant Deterg 3(1):53–58

    Article  CAS  Google Scholar 

  41. Scholz N, Behnke T, Resch-Genger U (2018) Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. J Fluoresc 28(1):465–476

    Article  CAS  PubMed  Google Scholar 

  42. Ohyashiki T, Mohri T, (1983) Fluorometric Analysis of the Micelle Formation Process of Surfactants in Aqueous Solution. I. Utility of Pyrene in Determination of the Critical Micelle Concentration. Chem Pharm Bull 31(4):1296–1300

    Article  CAS  Google Scholar 

  43. Ferrari R, Lupi M, Colombo C, Morbidelli M, D’Incalci M, Moscatelli D (2014) Investigation of size, surface charge, PEGylation degree and concentration on the cellular uptake of polymer nanoparticles. Colloids Surf B Biointerfaces 123:639–647

    Article  CAS  PubMed  Google Scholar 

  44. Song Y, Tian Q, Huang Z, Fan D, She Z, Liu X, Cheng X, Yu B, Deng Y (2014) Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system. Int J Nanomedicine 9:2307

    PubMed  PubMed Central  Google Scholar 

  45. Kaneko T, Nagasawa H, Gong JP, Osada Y (2004) Liquid crystalline hydrogels: mesomorphic behavior of amphiphilic polyacrylates bearing cholesterol mesogen. Macromolecules 37(1):187–191

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We express our gratitude to the Colombian Ministry of Science and Technology for the financial support through grant number 834-2017.

Funding

Grant number 834-2017 provided by the Ministry of Science and Technology to LDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon D. Perez.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 763 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angarita-Villamizar, A.V., Arias, E.R., Diaz, I.L. et al. Amphiphilic copolymers modified with oleic acid and cholesterol by combining ring opening polymerization and click chemistry with improved amphotericin B loading capacity. J Polym Res 28, 18 (2021). https://doi.org/10.1007/s10965-020-02392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02392-y

Keywords

Navigation