Skip to main content

Advertisement

Log in

Optimized ciprofloxacin release from citric acid crosslinked starch-PVA hydrogel film: modelling with mixture design

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Projecting optimal composition for hydrogel blends, while designing sustained release formulation of hydrophilic drug, is of paramount importance. In present study, composite hydrogel incorporating ciprofloxacin (0.2% w/w) was prepared by sequential addition of polyvinyl alcohol (PVA) (20–95% w/w), starch (0–75% w/w), citric acid (5–80% w/w) as cross-linker in a heat-induced gelatinization process. A constrained simplex mixture design was adopted to rationalize the proportion of ingredients in hydrogel composition while modelling the time required for 50% drug release from the hydrogel under in-vitro conditions. Prepared hydrogels were also characterized for swelling ratio, tensile strength, and antimicrobial disc-diffusion assay. Decreasing proportion of starch relative to PVA results in a transparent hydrogel, with a high degree of equilibrium swelling (up to 104%). Drug release from all hydrogel blend arguably followed Korsmeyer-Peppas release kinetics with quasi-Fickian to non-Fickian release behaviour. The time required for 50% drug release and the hydrogel dissolution was proportional, indicating disintegration-controlled release rate. Reduced cubic-model based on the forward selection offered good agreement with experimental data (R2, 0.98 and adjusted R2 of 0.91). Optimal blend projection by the model with a mass ratio of 0.38:0.21:0.41 for PVA: Starch: citric acid was verified to be reasonably correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boateng J, Catanzano O (2015) Advanced Therapeutic Dressings for Effective Wound Healing—A Review. J Pharm Sci 104:3653–3680. https://doi.org/10.1002/jps.24610

    Article  CAS  PubMed  Google Scholar 

  2. Serra R, Grande R, Butrico L et al (2015) Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 13:605–613. https://doi.org/10.1586/14787210.2015.1023291

    Article  CAS  PubMed  Google Scholar 

  3. Roy DC, Tomblyn S, Burmeister DM et al (2015) Ciprofloxacin-Loaded Keratin Hydrogels Prevent Pseudomonas aeruginosa Infection and Support Healing in a Porcine Full-Thickness Excisional Wound. Adv Wound Care 4:457–468. https://doi.org/10.1089/wound.2014.0576

    Article  Google Scholar 

  4. Liu X, Nielsen LH, Kłodzińska SN et al (2018) Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49. https://doi.org/10.1016/j.ejpb.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Unnithan AR, Barakat NAM, Tirupathi Pichiah PB et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90:1786–1793. https://doi.org/10.1016/j.carbpol.2012.07.071

    Article  CAS  PubMed  Google Scholar 

  6. Vermeulen H, Ubbink DT, de Zwart F et al (2007) Preferences of patients, doctors, and nurses regarding wound dressing characteristics: A conjoint analysis. Wound Repair Regen 15:302–307. https://doi.org/10.1111/j.1524-475X.2007.00230.x

    Article  PubMed  Google Scholar 

  7. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peppas NA (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  9. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233. https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  10. Shitole AA, Raut PW, Khandwekar A et al (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26:201. https://doi.org/10.1007/s10965-019-1874-6

    Article  CAS  Google Scholar 

  11. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23. https://doi.org/10.1016/J.ADDR.2012.09.010

    Article  Google Scholar 

  12. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 49:1993–2007. https://doi.org/10.1016/J.POLYMER.2008.01.027

    Article  CAS  Google Scholar 

  13. Bajpai SK, Sonkusley J (2002) Hydrogels for oral drug delivery of peptides: Synthesis and characterization. J Appl Polym Sci 83:1717–1729. https://doi.org/10.1002/app.10097

    Article  CAS  Google Scholar 

  14. Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16. https://doi.org/10.1016/J.CARBPOL.2011.01.030

    Article  CAS  Google Scholar 

  15. Ibrahim MM, El-Zawawy WK, Nassar MA (2010) Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydr Polym 79:694–699. https://doi.org/10.1016/J.CARBPOL.2009.09.030

    Article  CAS  Google Scholar 

  16. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079. https://doi.org/10.1016/J.PMATSCI.2005.05.002

    Article  Google Scholar 

  17. Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70:1557–1563. https://doi.org/10.1016/j.compscitech.2010.05.022

    Article  CAS  Google Scholar 

  18. Liu Q, Chen N, Bai S, Li W (2018) Effect of silver nitrate on the thermal processability of poly(vinyl alcohol) modified by water. RSC Adv 8:2804–2810. https://doi.org/10.1039/C7RA12941F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bueno VB, Bentini R, Catalani LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099. https://doi.org/10.1016/j.carbpol.2012.10.062

    Article  CAS  PubMed  Google Scholar 

  20. Shi R, Bi J, Zhang Z et al (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770. https://doi.org/10.1016/j.carbpol.2008.04.045

    Article  CAS  Google Scholar 

  21. Park H-R, Chough S-H, Yun Y-H, Yoon S-D (2005) Properties of Starch/PVA Blend Films Containing Citric Acid as Additive. J Polym Environ 13:375–382. https://doi.org/10.1007/s10924-005-5532-1

    Article  CAS  Google Scholar 

  22. Das A, Uppaluri R, Das C (2019) Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int J Biol Macromol 131:998–1007. https://doi.org/10.1016/j.ijbiomac.2019.03.160

    Article  CAS  PubMed  Google Scholar 

  23. Ounkaew A, Kasemsiri P, Kamwilaisak K et al (2018) Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid. J Polym Environ 26:3762–3772. https://doi.org/10.1007/s10924-018-1254-z

    Article  CAS  Google Scholar 

  24. Wu Z, Wu J, Peng T et al (2017) Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films. Polymers (Basel) 9:102. https://doi.org/10.3390/polym9030102

    Article  CAS  PubMed Central  Google Scholar 

  25. Chin SF, Romainor ANB, Pang SC, Lihan S (2019) Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. J Drug Deliv Sci Technol 54:101239. https://doi.org/10.1016/j.jddst.2019.101239

    Article  CAS  Google Scholar 

  26. Sridach W, Jonjankiat S, Wittaya T (2013) Effect of citric acid, PVOH, and starch ratio on the properties of cross-linked poly(vinyl alcohol)/starch adhesives. J Adhes Sci Technol 27:1727–1738. https://doi.org/10.1080/01694243.2012.753394

    Article  CAS  Google Scholar 

  27. Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27. https://doi.org/10.1016/j.ijbiomac.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Bagri LP, Bajpai J, Bajpai AK (2011) Evaluation of starch based cryogels as potential biomaterials for controlled release of antibiotic drugs. Bull Mater Sci 34:1739–1748. https://doi.org/10.1007/s12034-011-0385-9

    Article  CAS  Google Scholar 

  29. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  30. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  CAS  PubMed  Google Scholar 

  31. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

  32. Mabrouk M, Mostafa AA, Oudadesse H et al (2014) Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram Int 40:4833–4845. https://doi.org/10.1016/j.ceramint.2013.09.033

    Article  CAS  Google Scholar 

  33. Pal K, Banthia AK, Majumdar DK (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62:215–218. https://doi.org/10.1016/j.matlet.2007.04.113

    Article  CAS  Google Scholar 

  34. Zou G-X, Qu J-P, Zou X-L (2007) Optimization of water absorption of starch/PVA composites. Polym Compos 28:674–679. https://doi.org/10.1002/pc.20333

    Article  CAS  Google Scholar 

  35. Ghorpade VS, Dias RJ, Mali KK, Mulla SI (2019) Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. J Drug Deliv Sci Technol 52:421–430. https://doi.org/10.1016/j.jddst.2019.05.013

    Article  CAS  Google Scholar 

  36. Zhou X-H, Wei D-X, Ye H-M et al (2016) Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Mater Sci Eng C 67:326–335. https://doi.org/10.1016/j.msec.2016.05.030

    Article  CAS  Google Scholar 

  37. Sreedhar B, Sairam M, Chattopadhyay DK et al (2005) Thermal, mechanical, and surface characterization of starch-poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci 96:1313–1322. https://doi.org/10.1002/app.21439

    Article  CAS  Google Scholar 

  38. Xu F, Lu T (2011) Experimental Characterization of Skin Biothermomechanics. Introduction to Skin Biothermomechanics and Thermal Pain. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 267–323

    Chapter  Google Scholar 

  39. Mahdavinia GR, Karimi MH, Soltaniniya M, Massoumi B (2019) In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol 126:443–453. https://doi.org/10.1016/j.ijbiomac.2018.12.240

    Article  CAS  PubMed  Google Scholar 

  40. Ounkaew A, Kasemsiri P, Jetsrisuparb K et al (2020) Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr Polym 248:116767. https://doi.org/10.1016/j.carbpol.2020.116767

    Article  CAS  PubMed  Google Scholar 

  41. Uliniuc A, Hamaide T, Popa M, Băcăiță S (2013) Modified Starch-Based Hydrogels Cross-Linked with Citric Acid and their use as Drug Delivery Systems for Levofloxacin. Soft Mater 11:483–493. https://doi.org/10.1080/1539445X.2012.710698

    Article  CAS  Google Scholar 

  42. Marani PL, Bloisi GD, Petri DFS (2015) Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine. Cellulose 22:3907–3918. https://doi.org/10.1007/s10570-015-0757-1

    Article  CAS  Google Scholar 

  43. Negi P, Singh B, Sharma G et al (2016) Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv 23:941–957. https://doi.org/10.3109/10717544.2014.923067

    Article  CAS  Google Scholar 

  44. Pang SC, Chin SF, Tay SH, Tchong FM (2011) Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydr Polym 84:424–429. https://doi.org/10.1016/j.carbpol.2010.12.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswanath Mahanty.

Ethics declarations

Conflicts of interest

There is no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 378 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, J., Mahanty, B. Optimized ciprofloxacin release from citric acid crosslinked starch-PVA hydrogel film: modelling with mixture design. J Polym Res 28, 20 (2021). https://doi.org/10.1007/s10965-020-02397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02397-7

Keywords

Navigation