Skip to main content

Advertisement

Log in

Glycolysis: an efficient route for recycling of end of life polyurethane foams

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The increased applications of Polyurethane (PU) materials give rise to a higher amount of wastes, which have a devastating effect on the earth in turn; therefore, the management of end-of-life wastes is one of the most important issues in the modern world. Although incineration and landfilling are the most common procedure adopted for waste disposal, but both of them caused environmental problems such as air and soil pollution. Moreover, the former triggers global warming, and the latter causes water pollution making the problem worst. As a consequence, finding economical and environmentally friendly methods are a high priority topic for researchers to overcome this problem. Fortunately, recycling is an environmentally attractive solution, and there is an increased interest by the researchers in recycling PU wastes. Several recycling techniques for PUs have been described in the technical and scientific literature. Without any doubt, glycolysis reaction is one of the most important recycling method, especially for rigid and flexible PUs. In this review, glycolysis of waste polyurethane foam (PUF) materials with different glycols and catalysts, especially metallic ones were considered, and the effect of some additional parameters such as the nature of glycol, catalyst, temperature and material ratio were discussed too. In addition, a brief description on characterization of recycled products, and potential application of regenerated products is carried out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2
Fig. 3
Scheme 8

Similar content being viewed by others

Abbreviations

PU:

Polyurethane

PUF:

Polyurethane foam

PMDI :

Polymeric methylene diphenylisocyanate

MDI :

4,4′-diphenylmethane diisocyanate

PTMG :

Poly (tetramethylene ether) glycol

PUR-PIR :

Polyurethane-polyisocyanurate

TDI :

Toluene diisocyanate

DEA :

Di ethanol amine

MEA :

Monoethanolamine

DEG:

Diethylene glycol

EG :

Ethylene glycol

PEG :

Poly (ethylene glycol)

PEGs :

Poly ethylene glycols

MPG:

1,2-Propylene glycol

MEG :

Monoethylene glycol

DPG:

Dipropylene glycol

PG :

Propylene glycol

PPGs :

Polypropylene glycols

HDO:

1,6-Hexanediol

PER :

Pentaerythritol

Ti(OBu)4 :

Titanium n-butoxide

DBTDL :

Dibutyl tin dilaurate

BTO :

Butyl tin oxide

HBTO :

Hydroxyl butyl tin oxide

KAc :

Potassium acetate

Ba(Ac)2 :

Barium acetate

Zn(Ac)2 :

Zinc acetate

NaAC :

Sodium acetate

Sn(Oct)2 :

Stannous octoate

Ca(Oct)2 :

Calcium octoates

KOct :

Potassium octoate

FT-IR :

Fourier-transform infrared

NMR :

Nuclear magnetic resonance

DTG :

Derivative thermogravimetric

GPC:

Gel permeation chromatography

MW:

Microwave

Mw :

Molecular weight

Tg :

Glass transition temperature

ANN :

Artificial neural network

PCM :

Phase change materials

References

  1. Bayer O (1947) Polyurethane Paper von Bayer. Angew. Chemie 59:257–288. https://doi.org/10.1002/ange.19470590901

    Article  Google Scholar 

  2. Cornille A, Dworakowska S, Bogdal D, Boutevin B, Caillol S (2015) A new way of creating cellular polyurethane materials: NIPU foams. Eur Polym J 66:129–138. https://doi.org/10.1016/j.eurpolymj.2015.01.034

    Article  CAS  Google Scholar 

  3. Charrier JM (1991) Polymeric Materials and Processing. Hanser, New York

    Google Scholar 

  4. Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 66:26–32. https://doi.org/10.1016/j.ijbiomac.2014.01.073

    Article  CAS  PubMed  Google Scholar 

  5. Serrano A, Borreguero AM, Garrido I, Rodríguez JF, Carmona M (2016) Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl Therm Eng 103:226–232. https://doi.org/10.1016/j.applthermaleng.2016.04.098

    Article  CAS  Google Scholar 

  6. Zain NM, Roslin EN, Ahmad S (2016) Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications. Int J Adhes Adhes 71:1–9. https://doi.org/10.1016/j.ijadhadh.2016.08.001

    Article  CAS  Google Scholar 

  7. Verma G, Kaushik A, Ghosh AK (2016) Nano-interfaces between clay platelets and polyurethane hard segments in spray coated automotive nanocomposites. Prog Org Coatings 99:282–294. https://doi.org/10.1016/j.porgcoat.2016.06.001

    Article  CAS  Google Scholar 

  8. Deng R, Davies P, Bajaj AK (2003) Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications. J Sound Vib 262:391–417. https://doi.org/10.1016/S0022-460X(03)00104-4

    Article  Google Scholar 

  9. Davies P, Evrard G (2007) Accelerated ageing of polyurethanes for marine applications. Polym Degrad Stab 92:1455–1464. https://doi.org/10.1016/j.polymdegradstab.2007.05.016

    Article  CAS  Google Scholar 

  10. Dutta S, Karak N (2005) Synthesis, characterization of poly(urethane amide) resins from Nahar seed oil for surface coating applications. Prog Org Coatings 53:147–152. https://doi.org/10.1016/j.porgcoat.2005.02.003

    Article  CAS  Google Scholar 

  11. Dutta S, Karak N, Jana T (2009) Evaluation of Mesua ferrea L. seed oil modified polyurethane paints. Prog Org Coatings 65:131–135. https://doi.org/10.1016/j.porgcoat.2008.10.008

    Article  CAS  Google Scholar 

  12. Thakur S, Karak N (2013) Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coatings 76:157–164. https://doi.org/10.1016/j.porgcoat.2012.09.001

    Article  CAS  Google Scholar 

  13. Patel RH, Patel KS (2015) Synthesis and characterization of flame retardant hyperbranched polyurethanes for nano-composite and nano-coating applications. Prog Org Coatings 88:283–292. https://doi.org/10.1016/j.porgcoat.2015.07.007

    Article  CAS  Google Scholar 

  14. Chen L, Wang YZ (2010) A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol 21:1–26. https://doi.org/10.1002/pat.1550

    Article  CAS  Google Scholar 

  15. Ou B, Chen M, Guo Y, Kang Y, Guo Y, Zhang S, Yan J, Liu Q, Li D (2018) Preparation of novel marine antifouling polyurethane coating materials. Polym Bull 75:5143–5162. https://doi.org/10.1007/s00289-018-2302-5

    Article  CAS  Google Scholar 

  16. Yi J, Huang C, Zhuang H, Gong H, Zhang C, Ren R, Ma Y (2015) Degradable polyurethane based on star-shaped polyester polyols (trimethylolpropane and ɛ-caprolactone) for marine antifouling. Prog Org Coatings 87:161–170. https://doi.org/10.1016/j.porgcoat.2015.05.029

    Article  CAS  Google Scholar 

  17. Rahman MM, Zahir MH, Mazumder MAJ, Kumar AM (2019) Water-Erodible Xanthan-Acrylate-Polyurethane Antifouling Coating. Polymers (Basel) 11:1700. https://doi.org/10.3390/polym11101700

    Article  CAS  Google Scholar 

  18. Garrido M, Correia JR, Keller T (2016) Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Constr Build Mater 118:235–244. https://doi.org/10.1016/j.conbuildmat.2016.05.074

    Article  CAS  Google Scholar 

  19. Arenas JP, Castaño JL, Troncoso L, Auad ML (2019) Thermoplastic polyurethane/laponite nanocomposite for reducing impact sound in a floating floor. Appl Acoust 155:401–406. https://doi.org/10.1016/j.apacoust.2019.06.012

    Article  Google Scholar 

  20. Mekewi MA, Ramadan AM, ElDarse FM, Abdel Rehim MH, Mosa NA, Ibrahim MA (2017) Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egypt J Pet 26:9–15. https://doi.org/10.1016/j.ejpe.2016.02.002

    Article  Google Scholar 

  21. Sarojini KS, Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195

    Article  CAS  Google Scholar 

  22. Turan D (2019) Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Eng Rev. https://doi.org/10.1007/s12393-019-09205-z

    Article  Google Scholar 

  23. Mukherjee M, Gurusamy-Thangavelu SA, Chelike DK, Alagumalai A, Das BN, Jaisankar SN, Mandal AB (2020) Biodegradable polyurethane foam as shoe insole to reduce footwear waste: Optimization by morphological physicochemical and mechanical properties. Appl Surf Sci 499:143966. https://doi.org/10.1016/j.apsusc.2019.143966

    Article  CAS  Google Scholar 

  24. Xinrong S, Nanfang W, Kunyang S, Sha D, Zhen C (2014) Synthesis and characterization of waterborne polyurethane containing UV absorption group for finishing of cotton fabrics. J Ind Eng Chem 20:3228–3233. https://doi.org/10.1016/j.jiec.2013.12.003

    Article  CAS  Google Scholar 

  25. Yu Y, Zhang Y (2009) Review of Study on Resin Dye-Fixatives on Cotton Fabrics. Mod Appl Sci 3:9. https://doi.org/10.5539/mas.v3n10p9

    Article  CAS  Google Scholar 

  26. Muzaffar S, Bhatti IA, Zuber M, Bhatti HN, Shahid M (2016) Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int J Biol Macromol 93:145–155. https://doi.org/10.1016/j.ijbiomac.2016.08.068

    Article  CAS  PubMed  Google Scholar 

  27. Zia KM, Bhatti HN, Ahmad Bhatti I (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React Funct Polym 67:675–692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004

    Article  CAS  Google Scholar 

  28. Bowen HJM (1970) Absorption by polyurethane foams; new method of separation J Chem Soc A 1082–1085 https://doi.org/10.1039/j19700001082

  29. Azeem SMA, Arafa WAA, El-Shahat MF (2010) Synthesis and application of alizarin complexone functionalized polyurethane foam: Preconcentration/separation of metal ions from tap water and human urine. J Hazard Mater 182:286–294. https://doi.org/10.1016/j.jhazmat.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  30. Anthemidis A, Zachariadis G, Stratis J (2002) On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples. Talanta 58:831–840. https://doi.org/10.1016/S0039-9140(02)00373-9

    Article  CAS  PubMed  Google Scholar 

  31. Sant’Ana OD, Oliveira LG, Jesuino LS, Carvalho MS, Domingues M de LF, Cassella RJ, Santelli RE, (2002) A novel sampling strategy for cobalt determination by ETAAS using polyurethane foam. J Anal At Spectrom 17:258–262. https://doi.org/10.1039/b110804m

    Article  CAS  Google Scholar 

  32. Jang SH, Min BG, Jeong YG, Lyoo WS, Lee SC (2008) Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J Hazard Mater 152:1285–1292. https://doi.org/10.1016/j.jhazmat.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  33. Hong HJ, Lim JS, Hwang JY, Kim M, Jeong HS, Park MS (2018) Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr Polym 195:136–142. https://doi.org/10.1016/j.carbpol.2018.04.081

    Article  CAS  PubMed  Google Scholar 

  34. Moawed EA, El-Shahat MF (2013) Synthesis, characterization of low density polyhydroxy polyurethane foam and its application for separation and determination of gold in water and ores samples. Anal Chim Acta 788:200–207. https://doi.org/10.1016/j.aca.2013.05.064

    Article  CAS  PubMed  Google Scholar 

  35. Moawed EA, Burham N, El-Shahat MF (2013) Separation and determination of iron and manganese in water using polyhydroxyl polyurethane foam. J Assoc Arab Univ Basic Appl Sci 14:60–66. https://doi.org/10.1016/j.jaubas.2012.09.004

    Article  Google Scholar 

  36. Deen Abbas MN (2003) Solid Phase Spectrophotometric Determination of Traces of Arsenate and Phosphate in Water Using Polyurethane Foam Sorbent. Anal Lett 36:1231–1244. https://doi.org/10.1081/AL-120020155

    Article  CAS  Google Scholar 

  37. Moawed EA, Kiwaan HA, Elshazly MM (2017) Application of polyurethane@salvadora persica composite for detection and removal of acidic and basic dyes from wastewater. J Taiwan Inst Chem Eng 80:894–900. https://doi.org/10.1016/j.jtice.2017.07.028

    Article  CAS  Google Scholar 

  38. Mao N, Zhou L, Ye Z, Zheng W, Peng L, Li Y (2013) Preparation of Waterborne Polyurethane Foam with Active Carbon and Its Adsorption for Phenol in Aqueous Solution. J Environ Eng 139:1070–1079. https://doi.org/10.1061/(asce)ee.1943-7870.0000708

    Article  CAS  Google Scholar 

  39. Oribayo O, Feng X, Rempel GL, Pan Q (2017) Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem Eng J 323:191–202. https://doi.org/10.1016/j.cej.2017.04.054

    Article  CAS  Google Scholar 

  40. de Raat WK, Schulting FL, Burghardt E, de Meijere FA (1987) Application of polyurethane foam for sampling volatile mutagens from ambient air. Sci Total Environ 63:175–189. https://doi.org/10.1016/0048-9697(87)90044-1

    Article  PubMed  Google Scholar 

  41. Abdel Hakim AA, Nassar M, Emam A, Sultan M (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129:301–307. https://doi.org/10.1016/j.matchemphys.2011.04.008

    Article  CAS  Google Scholar 

  42. Shen D, Shi S, Xu T, Huang X, Liao G, Chen J (2018) Development of shape memory polyurethane based sealant for concrete pavement. Constr Build Mater 174:474–483. https://doi.org/10.1016/j.conbuildmat.2018.04.154

    Article  CAS  Google Scholar 

  43. Li W, Liu X, Wu J, Wu L, Sun A, Wei L (2019) Two-component modified polyurethane sealant for insulating glass: Design, preparation, and application. J Appl Polym Sci 136:48219. https://doi.org/10.1002/app.48219

    Article  CAS  Google Scholar 

  44. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: A critical review. Prog Polym Sci 35:487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  45. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  46. Haryńska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H (2019) Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication. Materials (Basel) 12:887. https://doi.org/10.3390/ma12060887

    Article  CAS  Google Scholar 

  47. Caba V, Borgese L, Agnelli S, Depero LE (2019) A green and simple process to develop conductive polyurethane foams for biomedical applications. Int J Polym Mater Polym Biomater 68:126–133. https://doi.org/10.1080/00914037.2018.1525732

    Article  CAS  Google Scholar 

  48. Uscátegui YL, Díaz LE, Valero MF (2019) In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices. J Mater Res 34:519–531. https://doi.org/10.1557/jmr.2018.448

    Article  CAS  Google Scholar 

  49. Solanki A, Thakore S (2015) Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers. Int J Biol Macromol 80:683–691. https://doi.org/10.1016/j.ijbiomac.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  50. Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H (2016) A robust super-tough biodegradable elastomer engineered by supramolecular ionic interactions. Biomaterials 84:54–63. https://doi.org/10.1016/j.biomaterials.2016.01.025

    Article  CAS  PubMed  Google Scholar 

  51. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res 66A:586–595. https://doi.org/10.1002/jbm.a.10504

    Article  CAS  Google Scholar 

  52. Hirsch DJ, Bergen P, Jindal KK (2008) Polyurethane Catheters for Long-Term Hemodialysis Access. Artif Organs 21:349–354. https://doi.org/10.1111/j.1525-1594.1997.tb00729.x

    Article  Google Scholar 

  53. Zhang Z, Wang Z, Liu S, Kodama M (2004) Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials 25:177–187. https://doi.org/10.1016/S0142-9612(03)00478-2

    Article  CAS  PubMed  Google Scholar 

  54. Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, Santerre JP, Amini-Nik S, Jeschke MG (2020) Electrospun Polyurethane-Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomater Sci Eng 6:505–516. https://doi.org/10.1021/acsbiomaterials.9b00861

    Article  CAS  Google Scholar 

  55. Lowinger M, Barrett S, Zhang F, Williams R, Lowinger MB, Barrett SE, Zhang F, Williams RO (2018) Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 10:55. https://doi.org/10.3390/pharmaceutics10020055

    Article  CAS  PubMed Central  Google Scholar 

  56. Sivak WN, Zhang J, Petoud S, Beckman EJ (2009) Simultaneous drug release at different rates from biodegradable polyurethane foams. Acta Biomater 5:2398–2408. https://doi.org/10.1016/j.actbio.2009.03.036

    Article  CAS  PubMed  Google Scholar 

  57. Nelson DM, Baraniak PR, Ma Z, Guan J, Mason NS, Wagner WR (2011) Controlled Release of IGF-1 and HGF from a Biodegradable Polyurethane Scaffold. Pharm Res 28:1282–1293. https://doi.org/10.1007/s11095-011-0391-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sivak WN, Pollack IF, Petoud S, Zamboni WC, Zhang J, Beckman EJ (2008) LDI–glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas. Acta Biomater 4:852–862. https://doi.org/10.1016/j.actbio.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  59. Huynh TTN, Padois K, Sonvico F, Rossi A, Zani F, Pirot F, Doury J, Falson F (2010) Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate. Eur J Pharm Biopharm 74:255–264. https://doi.org/10.1016/j.ejpb.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  60. Gama N, Ferreira A, Barros-Timmons A (2018) Polyurethane Foams: Past, Present, and Future. Materials (Basel) 11:1841. https://doi.org/10.3390/ma11101841

    Article  CAS  Google Scholar 

  61. Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9:4258–4287. https://doi.org/10.1039/C8PY00827B

    Article  CAS  Google Scholar 

  62. Piszczyk Ł, Danowska M, Mietlarek-Kropidłowska A, Szyszka M, Strankowski M (2014) Synthesis and thermal studies of flexible polyurethane nanocomposite foams obtained using nanoclay modified with flame retardant compound. J Therm Anal Calorim 118:901–909. https://doi.org/10.1007/s10973-014-3878-0

    Article  CAS  Google Scholar 

  63. Yang W, Dong Q, Liu S, Xie H, Liu L, Li J (2012) Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environ Sci 16:167–175. https://doi.org/10.1016/j.proenv.2012.10.023

    Article  CAS  Google Scholar 

  64. Wang X, Chen H, Chen C, Li H (2011) Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fibers Polym 12:857–863. https://doi.org/10.1007/s12221-011-0857-y

    Article  CAS  Google Scholar 

  65. Moon J, Kwak SB, Lee JY, Kim D, Ha JU, Oh JS (2020) Recycling of bio-polyurethane foam using high power ultrasound. Polymer (Guildf) 186:122072. https://doi.org/10.1016/j.polymer.2019.122072

    Article  CAS  Google Scholar 

  66. Ghose S, Isayev AI (2004a) Continuous Process for Recycling of Polyurethane Foam. J Cell Plast 40:167–189. https://doi.org/10.1177/0021955X04043717

    Article  Google Scholar 

  67. Ghose S, Isayev AI (2004b) Ultrasonic Devulcanization of Carbon Black Filled Polyurethane Rubber. J Elastomers Plast 36:213–239. https://doi.org/10.1177/0095244304042598

    Article  CAS  Google Scholar 

  68. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int 53:1585–1610. https://doi.org/10.1002/pi.1314

    Article  CAS  Google Scholar 

  69. Ravey M, Pearce EM (1997) Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J Appl Polym Sci 63:47–74. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1%3c47::AID-APP7%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  70. Alavi Nikje MM, Nikrah M, Haji Aga Mohammadi F (2008) Microwave-assisted Polyurethane Bond Cleavage via Hydroglycolysis Process at Atmospheric Pressure. J Cell Plast 44:367–380. https://doi.org/10.1177/0021955X08090279

    Article  CAS  Google Scholar 

  71. Simón D, Borreguero AM, de Lucas A, Rodríguez JF (2018) Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Manag 76:147–171. https://doi.org/10.1016/j.wasman.2018.03.041

    Article  CAS  PubMed  Google Scholar 

  72. Kemona A, Piotrowska M (2020) Polyurethane Recycling and Disposal: Methods and Prospects. Polymers (Basel) 12:1752. https://doi.org/10.3390/polym12081752

    Article  CAS  Google Scholar 

  73. Mahoney LR, Weiner SA, Ferris FC (1974) Hydrolysis of polyurethane foam waste. Environ Sci Technol 8:135–139. https://doi.org/10.1021/es60087a010

    Article  CAS  Google Scholar 

  74. Motokucho S, Yamaguchi A, Nakayama Y, Morikawa H, Nakatani H (2017) Hydrolysis of aromatic polyurethane in water under high pressure of CO 2. J Polym Sci Part A Polym Chem 55:2004–2010. https://doi.org/10.1002/pola.28576

    Article  CAS  Google Scholar 

  75. Mishra S, Zope VS, Kulkarni RD (2004) Kinetics and Thermodynamics of Hydrolytic Depolymerization of Polyurethane Foam at Higher Temperature and Pressure. Polym Plast Technol Eng 43:1001–1011. https://doi.org/10.1081/PPT-200030008

    Article  CAS  Google Scholar 

  76. Dai Z, Hatano B, Kadokawa JI, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stab 76:179–184. https://doi.org/10.1016/S0141-3910(02)00010-1

    Article  CAS  Google Scholar 

  77. Asahi N, Sakai K, Kumagai N, Nakanishi T, Hata K, Katoh S, Moriyoshi T (2004) Methanolysis investigation of commercially available polyurethane foam. Polym Degrad Stab 86:147–151. https://doi.org/10.1016/j.polymdegradstab.2004.04.002

    Article  CAS  Google Scholar 

  78. Xue S, Omoto M, Hidai T, Imai Y (1995) Preparation of epoxy hardeners from waste rigid polyurethane foam and their application. J Appl Polym Sci 56:127–134. https://doi.org/10.1002/app.1995.070560202

    Article  CAS  Google Scholar 

  79. Elidrissi A, Krim O, Ouslimane S, Berrabeh M, Touzani R (2007) Synthesis, characterisation, and chemical degradation of segmented polyurethanes with butylamine for chemical recycling. J Appl Polym Sci 105:1623–1631. https://doi.org/10.1002/app.26194

    Article  CAS  Google Scholar 

  80. Lentz H, Mormann W (1992) Chemical recycling of polyurethanes and separation of the components by supercritical ammonia. Makromol Chem Macromol Symp 57:305–310. https://doi.org/10.1002/masy.19920570127

    Article  CAS  Google Scholar 

  81. Gama N, Godinho B, Marques G, Silva R, Barros-Timmons A, Ferreira A (2020) Recycling of polyurethane scraps via acidolysis. Chem Eng J 395:125102. https://doi.org/10.1016/j.cej.2020.125102

    Article  CAS  Google Scholar 

  82. Datta J, Włoch M (2017) Recycling of Polyurethanes. In: Polyurethane Polymers. 1st edn, Elsevier.

  83. Molero C, Mitova V, Troev K, Rodriguez JF (2010) Kinetics and Mechanism of the Chemical Degradation of Flexible Polyurethane Foam Wastes with Dimethyl H-phosphonate with Different Catalysts. J Macromol Sci Part A 47:983–990. https://doi.org/10.1080/10601325.2010.506408

    Article  CAS  Google Scholar 

  84. Grancharov G, Mitova V, Shenkov S, Topliyska A, Gitsov I, Troev K (2007) Smart polymer recycling: Synthesis of novel rigid polyurethanes using phosphorus-containing oligomers formed by controlled degradation of microporous polyurethane elastomer. J Appl Polym Sci 105:302–308. https://doi.org/10.1002/app.25676

    Article  CAS  Google Scholar 

  85. Modesti M, Simioni F, Munari R, Baldoin N (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React Funct Polym 26:157–165. https://doi.org/10.1016/1381-5148(95)00031-A

    Article  CAS  Google Scholar 

  86. Reghunadhan A, Datta J, Jaroszewski M, Kalarikkal N, Thomas S (2020) Polyurethane glycolysate from industrial waste recycling to develop low dielectric constant, thermally stable materials suitable for the electronics. Arab J Chem 13:2110–2120. https://doi.org/10.1016/j.arabjc.2018.03.012

    Article  CAS  Google Scholar 

  87. Simón D, Rodríguez JF, Carmona M, Serrano A, Borreguero AM (2018) Glycolysis of advanced polyurethanes composites containing thermoregulating microcapsules. Chem Eng J 350:300–311. https://doi.org/10.1016/j.cej.2018.05.158

    Article  CAS  Google Scholar 

  88. Motokucho S, Nakayama Y, Morikawa H, Nakatani H (2018) Environment-friendly chemical recycling of aliphatic polyurethanes by hydrolysis in a CO 2 -water system. J Appl Polym Sci 135:45897. https://doi.org/10.1002/app.45897

    Article  CAS  Google Scholar 

  89. Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51:675–682. https://doi.org/10.1002/app.1994.070510412

    Article  CAS  Google Scholar 

  90. Soltysinski M, Piszczek K, Romecki D, Narozniak S, Tomaszewska J, Skorczewska K (2018) Conversion of polyurethane technological foam waste and post-consumer polyurethane mattresses into polyols – industrial applications. Polimery 63:234–238. https://doi.org/10.14314/polimery.2018.3.8

  91. Mitova V, Grancharov G, Molero C, Borreguero AM, Troev K, Rodriguez JF (2013) Chemical Degradation of Polymers (Polyurethanes, Polycarbonate and Polyamide) by Esters of H-phosphonic and Phosphoric Acids. J Macromol Sci Part A 50:774–795. https://doi.org/10.1080/10601325.2013.792667

    Article  CAS  Google Scholar 

  92. Troev K, Atanasov V, Tsevi R, Grancharov G, Tsekova A (2000) Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate. Polym Degrad Stab 67:159–165. https://doi.org/10.1016/S0141-3910(99)00105-6

    Article  CAS  Google Scholar 

  93. Troev K, Tsekova A, Tsevi R (2000a) Chemical degradation of polyurethanes: Degradation of flexible polyester polyurethane foam by phosphonic acid dialkyl esters. J Appl Polym Sci 78:2565–2573. https://doi.org/10.1002/1097-4628(20001227)78:14%3c2565::AID-APP180%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  94. Troev K, Atanassov V, Tzevi R (2000) Chemical degradation of polyurethanes. II. Degradation of microporous polyurethane elastomer by phosphoric acid esters. J Appl Polym Sci 76:886–893. https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6%3c886::AID-APP15%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  95. Troev K, Grancharov G, Tsevi R (2000) Chemical degradation of polyurethanes 3. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate. Polym Degrad Stab 70:43–48. https://doi.org/10.1016/S0141-3910(00)00086-0

    Article  CAS  Google Scholar 

  96. Troev K, Tsekova A, Tsevi R (2000b) Chemical degradation of polyurethanes2. Degradation of flexible polyether foam by dimethyl phosphonate. Polym Degrad Stab 67:397–405. https://doi.org/10.1016/S0141-3910(99)00106-8

    Article  CAS  Google Scholar 

  97. Troev K (2000) A novel approach to recycling of polyurethanes: chemical degradation of flexible polyurethane foams by triethyl phosphate. Polymer (Guildf) 41:7017–7022. https://doi.org/10.1016/S0032-3861(00)00054-9

    Article  CAS  Google Scholar 

  98. Borda J, Pásztor G, Zsuga M (2000) Glycolysis of polyurethane foams and elastomers. Polym Degrad Stab 68:419–422. https://doi.org/10.1016/S0141-3910(00)00030-6

    Article  CAS  Google Scholar 

  99. Datta J (2010) Synthesis and investigation of glycolysates and obtained polyurethane elastomers. J Elastomers Plast 42:117–127. https://doi.org/10.1177/0095244309354368

    Article  CAS  Google Scholar 

  100. Alavi Nikje MM, Tavassoli KM (2012) Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method. Curr Chem Lett 1:175–180. https://doi.org/10.5267/j.ccl.2012.7.002

    Article  CAS  Google Scholar 

  101. Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stab 94:533–539. https://doi.org/10.1016/j.polymdegradstab.2009.01.021

    Article  CAS  Google Scholar 

  102. Molero C, de Lucas A, Romero F, Rodríguez JF (2008) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J Appl Polym Sci 109:617–626. https://doi.org/10.1002/app.28136

    Article  CAS  Google Scholar 

  103. Zhao S, Yin L, Zhou Q, Liu C, Zhou K (2020) In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: Towards for highly efficient oil spill cleanup and fire safety. Appl Surf Sci 506:144700. https://doi.org/10.1016/j.apsusc.2019.144700

    Article  CAS  Google Scholar 

  104. Xu S, Li X, Sui G, Du R, Zhang Q, Fu Q (2020) Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem Eng J 381:122666. https://doi.org/10.1016/j.cej.2019.122666

    Article  CAS  Google Scholar 

  105. Liu H, Liu Z, Yang M, He Q (2013) Surperhydrophobic polyurethane foam modified by graphene oxide. J Appl Polym Sci 130:3530–3536. https://doi.org/10.1002/app.39406

    Article  CAS  Google Scholar 

  106. Kang SM, Kwon SH, Park JH, Kim BK (2013) Carbon nanotube reinforced shape memory polyurethane foam. Polym Bull 70:885–893. https://doi.org/10.1007/s00289-013-0905-4

    Article  CAS  Google Scholar 

  107. Lefebvre J, Bastin B, Le Bras M, Duquesne S, Ritter C, Paleja R, Poutch F (2004) Flame spread of flexible polyurethane foam: comprehensive study. Polym Test 23:281–290. https://doi.org/10.1016/j.polymertesting.2003.08.003

    Article  CAS  Google Scholar 

  108. Oliviero M, Verdolotti L, Stanzione M, Lavorgna M, Iannace S, Tarello M, Sorrentino A (2017) Bio-based flexible polyurethane foams derived from succinic polyol: Mechanical and acoustic performances. J Appl Polym Sci 134:45113. https://doi.org/10.1002/app.45113

    Article  CAS  Google Scholar 

  109. Beneš H, Rösner J, Holler P, Synková H, Kotek J, Horák Z (2007) Glycolysis of flexible polyurethane foam in recycling of car seats. Polym Adv Technol 18:149–156. https://doi.org/10.1002/pat.810

    Article  CAS  Google Scholar 

  110. Wu CH, Chang CY, Cheng CM, Huang HC (2003) Glycolysis of waste flexible polyurethane foam. Polym Degrad Stab 80:103–111. https://doi.org/10.1016/S0141-3910(02)00390-7

    Article  CAS  Google Scholar 

  111. Molero C, De Lucas A, Rodríguez JF (2006a) Recovery of polyols from flexible polyurethane foam by “split- phase” glycolysis: Glycol influence. Polym Degrad Stab 91:221–228. https://doi.org/10.1016/j.polymdegradstab.2005.05.008

    Article  CAS  Google Scholar 

  112. Molero C, de Lucas A, Rodríguez J (2006) Purification by liquid extraction of recovered polyols. Solvent Extr Ion Exch 24:719–730. https://doi.org/10.1080/07366290600762587

    Article  CAS  Google Scholar 

  113. Molero C, De Lucas A, Rodríguez JF (2006b) Recovery of polyols from flexible polyurethane foam by “split- phase” glycolysis with new catalysts. Polym Degrad Stab 91:894–901. https://doi.org/10.1016/j.polymdegradstab.2005.06.023

    Article  CAS  Google Scholar 

  114. Molero C, de Lucas A, Rodríguez JF (2008) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: Study on the influence of reaction parameters. Polym Degrad Stab 93:353–361. https://doi.org/10.1016/j.polymdegradstab.2007.11.026

    Article  CAS  Google Scholar 

  115. Molero C, De Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manag 11:130–132. https://doi.org/10.1007/s10163-008-0224-2

    Article  CAS  Google Scholar 

  116. Alavi Nikje MM, Nikrah M (2007) Glycerin as a new glycolysing agent for chemical recycling of cold cure polyurethane foam wastes in “split-phase” condition. Polym Bull 58:411–423. https://doi.org/10.1007/s00289-006-0683-3

    Article  CAS  Google Scholar 

  117. Alavi Nikje MM, Nikrah M, Haghshenas M (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull 59:91–104. https://doi.org/10.1007/s00289-007-0753-1

    Article  CAS  Google Scholar 

  118. Salamatinia B, Mootabadi H, Bhatia S, Abdullah AZ (2010) Optimization of ultrasonic-assisted heterogeneous biodiesel production from palm oil: A response surface methodology approach. Fuel Process Technol 91:441–448. https://doi.org/10.1016/j.fuproc.2009.12.002

    Article  CAS  Google Scholar 

  119. Melero JA, Vicente G, Paniagua M, Morales G, Muñoz P (2012) Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts. Bioresour Technol 103:142–151. https://doi.org/10.1016/j.biortech.2011.09.105

    Article  CAS  PubMed  Google Scholar 

  120. Simón D, Borreguero AM, de Lucas A, Rodríguez JF (2015) Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste. Polym Degrad Stab 121:126–136. https://doi.org/10.1016/j.polymdegradstab.2015.09.001

    Article  CAS  Google Scholar 

  121. Simón D, de Lucas A, Rodríguez JF, Borreguero AM (2016) Glycolysis of high resilience flexible polyurethane foams containing polyurethane dispersion polyol. Polym Degrad Stab 133:119–130. https://doi.org/10.1016/j.polymdegradstab.2016.08.007

    Article  CAS  Google Scholar 

  122. Datta J, Rohn M (2007) Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim 88:437–440. https://doi.org/10.1007/s10973-006-8041-0

    Article  CAS  Google Scholar 

  123. Alavi Nikje MM, Bagheri Garmarudi A (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J 19:287–295

    Google Scholar 

  124. dos Santos LM, Carone CLP, Dullius J, Ligabue R, Einloft S (2013) Using different catalysts in the chemical recycling of waste from flexible polyurethane foams. Polímeros Ciência e Tecnol 23:608–613. https://doi.org/10.4322/polimeros.2013.096

    Article  CAS  Google Scholar 

  125. Simón D, García MT, De Lucas A, Borreguero AM, Rodríguez JF (2013) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters. Polym Degrad Stab 98:144–149. https://doi.org/10.1016/j.polymdegradstab.2012.10.017

    Article  CAS  Google Scholar 

  126. Simón D, Borreguero AM, de Lucas A, Molero C, Rodríguez JF (2014) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manag 16:525–532. https://doi.org/10.1007/s10163-013-0205-y

    Article  CAS  Google Scholar 

  127. Borreguero AM, De LA, Rodríguez JF, Sim D (2015) Glycolysis of viscoelastic fl exible polyurethane foam wastes 116:23–35. https://doi.org/10.1016/j.polymdegradstab.2015.03.008

    Article  CAS  Google Scholar 

  128. Wang T, Yang Z, Yang B, Wang R, Huang J (2014) The electrochemical performances of Zn–Sn–Al-hydrotalcites in Zn–Ni secondary cells. J Power Sources 257:174–180. https://doi.org/10.1016/j.jpowsour.2014.02.006

    Article  CAS  Google Scholar 

  129. Morcillo-Bolaños YD, Malule-Herrera WJ, Ortiz-Arango JC, Villa-Holguín AL (2018) Polyurethane flexible foam recycling via glycolysis using Zn/Sn/Al hydrotalcites as heterogeneous catalyst. Rev Fac Ing Univ Antioquia 77–85. https://doi.org/10.17533/udea.redin.n87a10

  130. Esquer R, García JJ (2019) Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. J Organomet Chem 902:120972. https://doi.org/10.1016/j.jorganchem.2019.120972

    Article  CAS  Google Scholar 

  131. Hekmatjoo N, Ahmadi Z, Afshar Taromi F, Rezaee B, Hemmati F, Saeb MR (2015) Modeling of glycolysis of flexible polyurethane foam wastes by artificial neural network methodology. Polym Int 64:1111–1120. https://doi.org/10.1002/pi.4873

    Article  CAS  Google Scholar 

  132. Petrovic Z (2008) Polyurethanes from Vegetable Oils Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

    Article  CAS  Google Scholar 

  133. Maamoun AA, Mahmoud AA, Nasr EA, Soliman EA, Sarwar MI, Zulfiqar S (2019) Fabrication of novel formulations from rigid polyurethane foams and mortar for potential applications in building industry. J Polym Res 26:259. https://doi.org/10.1007/s10965-019-1934-y

    Article  CAS  Google Scholar 

  134. Riyapan D, Saetung A, Saetung N (2019) A Novel Rigid PU Foam Based on Modified Used Palm Oil as Sound Absorbing Material. J Polym Environ 27:1693–1708. https://doi.org/10.1007/s10924-019-01460-9

    Article  CAS  Google Scholar 

  135. Lee JY, Kim D (2000) Desaminated glycolysis of water-blown rigid polyurethane foams. J Appl Polym Sci 77:2646–2656. https://doi.org/10.1002/1097-4628(20000919)77:12%3c2646::AID-APP120%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  136. Wu CH, Chang CY, Li JK (2002) Glycolysis of rigid polyurethane from waste refrigerators. Polym Degrad Stab 75:413–421. https://doi.org/10.1016/S0141-3910(01)00237-3

    Article  CAS  Google Scholar 

  137. Zhu P, Cao ZB, Chen Y, Zhang XJ, Qian GR, Chu YL, Zhou M (2014) Glycolysis recycling of rigid waste polyurethane foam from refrigerators. Environ Technol 35:2676–2684. https://doi.org/10.1080/09593330.2014.918180

    Article  CAS  PubMed  Google Scholar 

  138. Murai M, Sanou M, Fujimoto T, Baba F (2003) Glycolysis of Rigid Polyurethane Foam under Various Reaction Conditions. J Cell Plast 39:15–27. https://doi.org/10.1177/002195503031021

    Article  CAS  Google Scholar 

  139. Czupryński B, Liszkowska J, Paciorek-Sadowska J (2012) Glycolysis of the rigid PUR-PIR foam modified with starch. J Appl Polym Sci 126:E44–E53. https://doi.org/10.1002/app.34938

    Article  CAS  Google Scholar 

  140. Paciorek-Sadowska J, Czupryński B, Liszkowska J (2016) Glycolysis of rigid polyurethane–polyisocyanurate foams with reduced flammability. J Elastomers Plast 48:340–353. https://doi.org/10.1177/0095244315576244

    Article  CAS  Google Scholar 

  141. Yang C, Fischer L, Maranda S, Worlitschek J (2015) Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways. Energy Build 87:25–36. https://doi.org/10.1016/j.enbuild.2014.10.075

    Article  Google Scholar 

  142. Maioli JP, Soares JO, Uliana F, Valim TC, Francisco CS, Da Silva Filho EA, Lacerda Junior V, Cunha Neto A (2019) Using NMR to Study the Process of Rigid Polyurethane Depolymerization. Orbital Electron J Chem 11:33–41 . https://doi.org/10.17807/orbital.v11i1.1385

  143. Yan D, Xu L, Chen C, Tang J, Ji X, Li Z (2012) Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polym Int 61:1107–1114. https://doi.org/10.1002/pi.4188

    Article  CAS  Google Scholar 

  144. Silva MC, Takahashi JA, Chaussy D, Belgacem MN, Silva GG (2010) Composites of rigid polyurethane foam and cellulose fiber residue J Appl Polym Sci 3665–3672 https://doi.org/10.1002/app.32281

  145. Datta J, Kacprzyk M (2008) Thermal analysis and static strength of polyurethanes obtained from glycolysates. J Therm Anal Calorim 93:753–757. https://doi.org/10.1007/s10973-008-9140-x

    Article  CAS  Google Scholar 

  146. Aguado A, Martínez L, Moral A, Fermoso J, Irusta R (2011) Chemical recycling of polyurethane foam waste via glycolysis. Chem Eng Trans 24:1069–1074. https://doi.org/10.3303/CET1124179

    Article  Google Scholar 

  147. Rodríguez-Álvarez MJ, García-Álvarez J, Uzelac M, Fairley M, O’Hara CT, Hevia E (2018) Introducing Glycerol as a Sustainable Solvent to Organolithium Chemistry: Ultrafast Chemoselective Addition of Aryllithium Reagents to Nitriles under Air and at Ambient Temperature. Chem - A Eur J 24:1720–1725. https://doi.org/10.1002/chem.201705577

    Article  CAS  Google Scholar 

  148. Gholinejad M, Zareh F, Nájera C (2018) Nitro group reduction and Suzuki reaction catalysed by palladium supported on magnetic nanoparticles modified with carbon quantum dots generated from glycerol and urea. Appl Organomet Chem 32:e3984. https://doi.org/10.1002/aoc.3984

    Article  CAS  Google Scholar 

  149. Raut DG, Bhosale RB (2018) One-pot PEG-mediated syntheses of 2-(2-hydrazinyl) thiazole derivatives: novel route. J Sulfur Chem 39:1–7. https://doi.org/10.1080/17415993.2017.1371175

    Article  CAS  Google Scholar 

  150. Hasaninejad A, Beyrati M (2018) Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetrical bis-spirooxindole derivatives at room temperature. RSC Adv 8:1934–1939. https://doi.org/10.1039/C7RA13133J

    Article  CAS  Google Scholar 

  151. Ghorbani-Choghamarani A, Shiri L, Azadi G (2016) The first report on the eco-friendly synthesis of 5- substituted 1H-tetrazoles in PEG catalyzed by Cu(II) immobilized on Fe3O4@SiO2@L-arginine as a novel, recyclable and non-corrosive catalyst. RSC Adv 6:32653–32660. https://doi.org/10.1039/C6RA03023H

    Article  CAS  Google Scholar 

  152. Sellemi H, Coste S, Barre M, Retoux R, Ben Ali A, Lacorre P (2015) Synthesis by the polyol process and ionic conductivity of nanostructured La2Mo2O9 powders. J Alloys Compd 653:422–433. https://doi.org/10.1016/j.jallcom.2015.07.250

    Article  CAS  Google Scholar 

  153. Qu Y, Wangyang P, Humayun M, Sun L, Batter B, Li Z (2017) Coordination and reduction in polyol-mediated solvothermal synthesis of nickel-based materials with controllable morphology and magnetic and electrochemical properties. Res Chem Intermed 43:6395–6406. https://doi.org/10.1007/s11164-017-2996-2

    Article  CAS  Google Scholar 

  154. Alves TEP, Kolodziej C, Burda C, Franco A (2018) Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater Des 146:125–133. https://doi.org/10.1016/j.matdes.2018.03.013

    Article  CAS  Google Scholar 

  155. Qi Y, Hao Q, Ren G, Liu C, Liu H (2017) Polylol-solution synthesis of CuInSe 2 nanoparticles ink for scalable solution-based thin film photovoltaic cells. Ferroelectrics 521:132–147. https://doi.org/10.1080/00150193.2017.1390991

    Article  CAS  Google Scholar 

  156. Kraitape N, Thongpin C (2016) Influence of Recycled Polyurethane Polyol on the Properties of Flexible Polyurethane Foams. Energy Procedia 89:186–197. https://doi.org/10.1016/j.egypro.2016.05.025

    Article  CAS  Google Scholar 

  157. Simón D, de Lucas A, Rodríguez JF, Borreguero AM (2017) Flexible polyurethane foams synthesized employing recovered polyols from glycolysis: Physical and structural properties. J Appl Polym Sci 134:45087. https://doi.org/10.1002/app.45087

    Article  CAS  Google Scholar 

  158. Calvo-Correas T, Ugarte L, Trzebiatowska PJ, Sanzberro R, Datta J, Corcuera MÁ, Eceiza A (2017) Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling. Polym Degrad Stab 144:411–419. https://doi.org/10.1016/j.polymdegradstab.2017.09.001

    Article  CAS  Google Scholar 

  159. Stefanovic I, Godjevac D, Spírková M, Jovancic P, Tesevic V, Milacic V, Pergal M (2016) Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) macrodiols on the surface related properties of polyurethane copolymers. Hem Ind 70:725–738. https://doi.org/10.2298/HEMIND151127009S

    Article  Google Scholar 

  160. Reghunadhan A, Thomas S (2017) Polyurethanes. In: Polyurethane Polymers, 1st edn . Elsevier.

  161. Reghunadhan A, Datta J, Kalarikkal N, Thomas S (2017) Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends. Polymer (Guildf) 117:96–106. https://doi.org/10.1016/j.polymer.2017.04.030

    Article  CAS  Google Scholar 

  162. Reghunadhan A, Stranskowski M, Datta J, Kalarikkal N, Thomas S (2018) Recycled Polyurethane as a Second Phase in Thermoset Blends and Its Effect on Thermal Degradation Kinetics Studies. Macromol Symp 381:1800112. https://doi.org/10.1002/masy.201800112

    Article  CAS  Google Scholar 

  163. Shin S, Kim H, Liang J, Lee S, Lee D (2019) Sustainable rigid polyurethane foams based on recycled polyols from chemical recycling of waste polyurethane foams. J Appl Polym Sci 136:47916. https://doi.org/10.1002/app.47916

    Article  CAS  Google Scholar 

  164. Kim HY, Choi JW, Chung YC, Chun BC (2017) The grafting of recycled polyol from waste polyurethane foam onto new polyurethane and its impact on shape recovery and water vapor permeation. Fibers Polym 18:842–851. https://doi.org/10.1007/s12221-017-1162-1

    Article  CAS  Google Scholar 

  165. Chung YC, Lee DH, Choi JW, Chun BC (2018) Application of recycled polyol and benzimidazole to the enhancement of antifungal activity of polyurethane. J Appl Polym Sci 135:46600. https://doi.org/10.1002/app.46600

    Article  CAS  Google Scholar 

  166. Jutrzenka Trzebiatowska P, Santamaria Echart A, Calvo Correas T, Eceiza A, Datta J (2018) The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog Org Coatings 115:41–48. https://doi.org/10.1016/j.porgcoat.2017.11.008

    Article  CAS  Google Scholar 

  167. Beneš H, Vlček T, Černá R, Hromádková J, Walterová Z, Svitáková R (2012) Polyurethanes with bio-based and recycled components. Eur J Lipid Sci Technol 114:71–83. https://doi.org/10.1002/ejlt.201000123

    Article  CAS  Google Scholar 

  168. Alavi Nikje MM, Bagheri Garmarudi A (2006) Starch, Sucrose, and Rezol IL800 as Density Modifiers for Polyurethane Rigid Foams Formulated by Recycled Polyol. Polym Plast Technol Eng 45:1101–1107. https://doi.org/10.1080/03602550600728992

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors thank the https://www.inmywork.com/ for graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roghayeh Heiran or Amir hossein Haghighi.

Ethics declarations

Conflicts of interest

The authors declare that have no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiran, R., Ghaderian, A., Reghunadhan, A. et al. Glycolysis: an efficient route for recycling of end of life polyurethane foams. J Polym Res 28, 22 (2021). https://doi.org/10.1007/s10965-020-02383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02383-z

Keywords

Navigation