Skip to main content
Log in

A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Virtual commissioning is a key technology in Industry 4.0 that can address issues faced by engineers during early design phases. The process of virtual commissioning involves the creation of a Digital Twin—a dynamic, virtual representation of a corresponding physical system. The digital twin model can be used for testing and verifying the control system in a simulated virtual environment to achieve rapid set-up and optimization prior to physical commissioning. Additionally, the modular production control systems, can be integrated and tested during or prior to the construction of the physical system. This paper describes the implementation of a digital twin emulator of an automated mechatronic modular production system that is linked with the running programmable logic controllers and allow for exchanging near real-time information with the physical system. The development and deployment of the digital twin emulator involves a novel hybrid simulation- and data-driven modeling approach that combines Discrete Event Simulation and Agent Based Modeling paradigms. The Digital Twin Emulator can support design decisions, test what-if system configurations, verify and validate the actual behavior of the complete system off-line, test realistic reactions, and provide statistics on the system’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen, A.-L., Nielsen, K., & Brunoe, T. D. (2016). Prerequisites and barriers for the development of reconfigurable manufacturing systems for high speed ramp-up. Procedia Cirp, 51(1), 7–12.

    Article  Google Scholar 

  • Anglani, A., Grieco, A., Pacella, M., & Tolio, T. (2002). Object-oriented modeling and simulation of flexible manufacturing systems: a rule-based procedure. Simulation Modelling Practice and Theory, 10(3–4), 209–234.

    Article  Google Scholar 

  • Auinger, F., Vorderwinkler, M., & Buchtela, G. (1999). Interface driven domain-independent modeling architecture for “soft-commissioning” and “reality in the loop”. WSC’99. Winter Simulation Conference Proceedings “Simulation-A Bridge to the Future” (Cat. No. 99CH37038). 1. IEEE.

  • Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., & Valtolina, S. (2020). Human Digital Twin for Fitness Management. IEEE Access, 8, 26637–26664.

    Article  Google Scholar 

  • Bathelt, J., & Meile, J. (2007). Computer aided methods supporting concurrent engineering when designing mechatronic systems controlled by a plc. In Proceedings of International Conference on Manufacturing Automation (ICMA07). Singapore.

  • Beckert, B., Mund, J., Ulbrich, M., & Weigl, A. (2019). Formal Verification of Evolutionary Changes. In Managed Software Evolution (pp. 310–311). Springer: Cham.

  • Biesinger, F., Meike, D., Kraß, B., & Weyrich, M. (2018). A Case Study for a Digital Twin of Body-in-White Production Systems General Concept for Automated Updating of Planning Projects in the Digital Factory. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). 1, (pp. 19–26). Turin: IEEE.

  • Boot, R., Richert, J., Schutte, H., & Rukgauer, A. (1999). Automated test of ECUs in a hardware-in-the-loop simulation environment. In Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No. 99TH8404), (pp. 587–594). IEEE.

  • Carlsson, H., Svensson, B., Danielsson, F., & Lennartson, B. (2012). Methods for reliable simulation-based PLC code verification. IEEE Transactions on Industrial Informatics, 8(2), 267–278.

    Article  Google Scholar 

  • Dahl, M., Bengtsson, K., Bergagård, P., Fabian, M., & Falkman, P. (2016). Integrated virtual preparation and commissioning: supporting formal methods during automation systems development. IFAC-Papers OnLine, 49(12), 1939–1944.

    Article  Google Scholar 

  • Delbrügger, T., & Rossmann, J. (2019). Representing adaptation options in experimentable digital twins of production systems. International Journal of Computer Integrated Manufacturing, 32(4–5), 352–365.

    Article  Google Scholar 

  • Eklund, P., Wray, T., Goodall, P., & Lawson, A. (2012). Design, information organisation and the evaluation of the Virtual Museum of the Pacific digital ecosystem. Journal of Ambient Intelligence and Humanized Computing, 3(4), 265–280.

    Article  Google Scholar 

  • Eskin, A., & Frank, A. (2003). Offline simulation of a managed system for testing a developed management system. In Proceedings 2003 Symposium on Security and Privacy, (pp. 154–163). IEEE.

  • Experimental Physics and Industrial Control Systems. (2020). (Argonne National Laboratory) Retrieved April 2019, from https://epics.anl.gov

  • Farsi, M., Daneshkhah, A., Hosseinian-Far, A., & Jahankhani, H. (Eds.). (2020). Digital Twin Technologies and Smart Cities. Berlin: Springer.

    Google Scholar 

  • Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air Force vehicles. 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th, (p. 1818).

  • Graebe, S., Schleicher, M., Steringer, R., & Zeichen, G. (1997). Reality in the Loop. Manufacturing System Design.

  • Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary perspectives on complex systems (pp. 85–113). Cham: Springer.

  • Guo, J., Zhao, N., Sun, L., & Zhang, S. (2019). Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1189–1200.

    Article  Google Scholar 

  • Hanisch, H.-M., Lobov, A., Lastra, J. L., Tuokko, R., & Vyatkin, V. (2006). Formal validation of intelligent-automated production systems: towards industrial applications. International Journal of Manufacturing Technology and Management, 1(3), 75–106.

    Article  Google Scholar 

  • Hanselmann, H. (1998). Hardware-in-the-loop simulation testing and its integration into a CACSD toolset. In Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design (pp. 152–156). IEEE.

  • Haße, H., Li, B., Weißenberg, N., Cirullies, J., & Otto, B. (2020). Digital twin for real-time data processing in logistics. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL). 27, (pp. 4–28). Berlin: epubli GmbH.

  • Hoffmann, P., Schumann, R., Maksoud, T. M., & Premier, G. C. (2010). Virtual commissioning of manufacturing systems a review and new approaches for simplification. In European Conference of Modeling and Simulation (ECMS), (pp. 175–181).

  • Kim, H.-J. S., Kernbaum, & Seliger, G. (2009). Emulation-based control of a disassembly system for LCD monitors. The International Journal of Advanced Manufacturing Technology, 3(4), 383–392.

    Article  Google Scholar 

  • Korth, B., Schwede, C., & Zajac, M. (2018). 2018 Simulation-ready digital twin for realtime management of logistics systems. In IEEE International Conference on Big Data (Big Data) (pp. 4194–4201). IEEE.

  • Lampérière-Couffin, S., Rossi, O., Roussel, J.-M., & Lesage, J.-J. (1999). Formal validation of PLC programs: a survey. In 1999 European Control Conference (ECC) (pp. 2170–2175). IEEE.

  • Lee, C. G., & Park, S. C. (2014). Survey on the virtual commissioning of manufacturing systems. Journal of Computational Design and Engineering, 1(3), 213–222.

    Article  Google Scholar 

  • Lim, K. Y. H., Zheng, P., & Chen, C. H. (2019). A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337. https://doi.org/10.1007/s10845-019-01512-w

    Article  Google Scholar 

  • Makris, S., Michalos, G., & Chryssolouris, G. (2012). Virtual commissioning of an assembly cell with cooperating robots. Advances in Decision Sciences, 2012, 428060. https://doi.org/10.1155/2012/428060

  • Marmolejo-Saucedo, J. A. (2020). Design and Development of Digital Twins: a Case Study in Supply Chains. Mobile Networks and Applications. 1. Springer

  • Mykoniatis, K. (2015). A Generic Framework For Multi-Method Modeling and Simulation of Complex Systems Using Discrete Event, System Dynamics and Agent Based Approaches.

  • Mykoniatis, K., & Angelopoulou, A. (2020). A modeling framework for the application of multi-paradigm simulation methods. Simulation, 96(1), 55–73.

    Article  Google Scholar 

  • Oppelt, M., & Urbas, L. (2014). Integrated virtual commissioning an essential activity in the automation engineering process: From virtual commissioning to simulation supported engineering. In IECON 201440th Annual Conference of the IEEE Industrial Electronics Society (pp. 2564–2570). IEEE.

  • Pellicciari, M., Andrisano, A. O., Leali, F., & Vergnano, A. (2009). Engineering method for adaptive manufacturing systems design. International Journal on Interactive Design and Manufacturing (IJIDeM), 3(2), 81–91.

    Article  Google Scholar 

  • Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: a manufacturing case study implementation. Journal of Intelligent Manufacturing, 31, 1383–1402. https://doi.org/10.1007/s10845-019-01516-6

    Article  Google Scholar 

  • Reszka, P. (2019, November 21). Automation.com. (WAGO Corporation) Retrieved 8 4, 2019, from https://www.automation.com/en-us/articles/2019/connecting-to-the-plc-from-a-remote-location

  • Rogers, G. G., & Bottaci, L. (1997). Modular production systems: a new manufacturing paradigm. Journal of Intelligent Manufacturing, 8(2), 147–156.

    Article  Google Scholar 

  • Schiess, C. (2001). Emulation: debug it in the lab-not on the floor. In Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304). 2. IEEE.

  • Schludermann, H., Kirchmair, T., & Vorderwinkler, M. (2000). Soft-commissioning: hardware-in-the-loop-based verification of controller software. In Proceedings of the 32nd conference on Winter simulation. (pp. 893–899). Society for Computer Simulation International.

  • Schluse, M., Atorf, L., & Rossmann, J. (2017). Experimentable digital twins for model-based systems engineering and simulation-based development. In 2017 Annual IEEE International Systems Conference (SysCon) (pp. 1-8). IEEE.

  • Schuette, H., & Waeltermann, P. (2005). Hardware-in-the-loop testing of vehicle dynamics controllers–a technical survey. SAE Transactions, 2, 593–609. https://doi.org/10.4271/2005-01-1660

  • Shafto, M., Conroy, M., Doyle, R., Glaesgen., Ed; Kemp, C., LeMoigne, J., Wang, L. (2010, November). DRAFT Modeling, Simulation, Information Technology & Processing Roadmap. National Aeronautics and Space Administration. Retrieved 8 10, 2020, from nasa.gov: https://www.nasa.gov/pdf/501321main_TA11-MSITP-DRAFT-Nov2010-A1.pdf

  • Shahim, N., & Møller, C. (2016). Economic justification of virtual commissioning in automation industry. In 2016 Winter Simulation Conference (WSC) (pp. 2430–2441). IEEE.

  • Shao, G., & Helu, M. (2020). Framework for a digital twin in manufacturing: scope and requirements. Manufacturing Letters, 24, 105–107.

    Article  Google Scholar 

  • Shao, G., Jain, S., Laroque, C., Lee, L. H., Lendermann, P., & Oliver, R. (2019). Digital twin for smart manufacturing: the simulation aspect. 2019 Winter Simulation Conference (WSC) (pp. 2085–2098). IEEE.

  • Smith, J. S., & Cho, Y. (2008). Offline commissioning of a PLC-based control system using Arena. In Winter Simulation Conference. IEEE.

  • Stöcklein, J., Geiger, C., & Paelke, V. (2010). Mixed reality in the loop—design process for interactive mechatronical systems. IEEE Virtual Reality Conference (VR). IEEE.

  • Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576.

    Article  Google Scholar 

  • Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al. (2019). Digital twin-driven product design framework. International Journal of Production Research, 57(12), 3935–3953.

    Article  Google Scholar 

  • Thramboulidis, K. (2005). Model-integrated mechatronics-toward a new paradigm in the development of manufacturing systems. IEEE Transactions on Industrial Informatics, 1(1), 54–61.

    Article  Google Scholar 

  • Uhlemann, T. H.-J., Christian, L., & Rolf, S. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp 61, (pp. 335–340).

  • van der Valk, H., Hendrik, H., Möller, F., Arbter, M., Henning, J.-L., & Otto, B. (2020). A Taxonomy of Digital Twins. In 26th Americas Conference on Information Systems (AMCIS) At: Salt Lake City, USA, Projects: Leistungszentrum Logistik und IT Reference Architecture for Digital Twins in Logistics Lab: Boris Otto's Lab. https://www.researchgate.net/publication/341235159_A_Taxonomy_of_Digital_Twins

  • Versteegt, C., & Verbraeck., A. (2002). The extended use of simulation in evaluating real-time control systems of AGVs and automated material handling systems. In Proceedings of the Winter Simulation Conference. 2, pp. 1659–1666. IEEE.

  • Younis, M. B., & Frey, G. (2003). Formalization of existing PLC programs: A survey. In Proceedings of CESA, (pp. 0234–0239).

  • Zäh, M. F., Wünsch, G., Hensel, T., & Lindworsky, A. (2006). Benefits of the Virtual Commissioning–An Experiment (original title: Nutzen der virtuellen Inbetriebnahme: Ein Experiment). ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 101(9), 595–599.

    Article  Google Scholar 

  • Zhang, Z., Wang, X., Wang, X., Cui, F., & Hui, C. (2019). A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing, 10(3), 12171230.

    Google Scholar 

  • Zheng, Y., Chen, L., Lu, X., Sen, Y., & Cheng, H. (2020). Digital twin for geometric feature online inspection system of car body-in-white. International Journal of Computer Integrated Manufacturing. https://doi.org/10.1080/0951192X.2020.1736637

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Richard Sack for his helpful suggestions and programming efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Mykoniatis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mykoniatis, K., Harris, G.A. A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach. J Intell Manuf 32, 1899–1911 (2021). https://doi.org/10.1007/s10845-020-01724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01724-5

Keywords

Navigation