Skip to main content

Advertisement

Log in

Phylogenetic beta diversity of Odonata assemblages in the extreme condition of Central Iran

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are of the most diverse ecosystems in the world, but anthropogenic disturbance and climate change are threatening the biodiversity of these habitats, particularly in the highly vulnerable arid regions. Understanding the compositional patterns in aquatic biota and discovering factors responsible for these patterns enable researchers to predict the impacts of environmental changes and reduce their destructive effects. As a first step for evaluating the conservation value of freshwater ecosystems in the arid areas of Central Iran, we investigated the phylogenetic beta diversity of Odonata assemblages and their response to climate, landscape, and local predictors. A total of 41 water bodies were surveyed and 42 species of Odonata were recorded. The distance matrices related to the total phylogenetic beta diversity of Odonata and the replacement and richness difference components were computed. Each of the three dissimilarity matrices were modelled by generalized dissimilarity modelling (GDM). The average phylogenetic beta diversity was high, and the replacement component had a higher contribution rather than the richness difference component. GDMs results showed that total phylogenetic beta diversity was strongly associated with climate and local predictors. The most influential variables observed were climate variables. Our findings indicated that even in extreme conditions, the freshwater ecosystems could support species with various phylogenetic histories. We emphasize the importance of man-made water bodies in supporting freshwater biodiversity in arid areas. Given the growing threat of habitat degradation and climate change, with no conservation plan, many vulnerable species may be in danger of localized extinction within the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14(1):19–28

    PubMed  Google Scholar 

  • Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1):264–275

    CAS  Google Scholar 

  • Bertin A, Alvarez E, Gouin N et al (2015) Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw Biol 60(2):297–310

    Google Scholar 

  • Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquat Conserv 15(6):693–714

    Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105(Supplement 1):11505–11511

    CAS  PubMed  Google Scholar 

  • Bush A, Theischinger G, Nipperess D, Turak E, Hughes L (2013) Dragonflies: climate canaries for river management. Divers Distrib 19(1):86–97

    Google Scholar 

  • Butler RG, Demaynadier PG (2008) The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). J Insect Conserv 12(1):23–36

    Google Scholar 

  • Cardoso P, Rigal F, Carvalho JC, Fortelius M, Borges PA, Podani J, Schmera D (2014) Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J Biogeogr 41(4):749–761

    Google Scholar 

  • Cardoso P, Rigal F, Carvalho JC (2015) BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol Evol 6(2):232–236

    Google Scholar 

  • Carvalho JC, Cardoso P, Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecol Biogeogr 21(7):760–771

    Google Scholar 

  • Carvalho FGd, Pinto NS, Oliveira Júnior JMBd, Juen L (2013) Effects of marginal vegetation removal on Odonata communities. Acta Limnol Bras 25(1):10–18

    Google Scholar 

  • Chave J, Chust G, Thébaud C (2007) The importance of phylogenetic structure in biodiversity studies. In: Storch D, Marquet P, Braun J (eds) Scaling biodiversity. Cambridge University Press, pp 151–167

  • Clausnitzer V, Kalkman VJ, Ram M et al (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Conserv 142(8):1864–1869

    Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Colchester, UK

    Google Scholar 

  • Curry CJ, Baird DJ (2015) Habitat type and dispersal ability influence spatial structuring of larval Odonata and Trichoptera assemblages. Freshw Biol 60(10):2142–2155

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58

    Google Scholar 

  • Deacon C, Samways MJ, Pryke JS (2020) Determining drivers of dragonfly diversity patterns and the implications for conservation in South Africa. Biol Conserv 245:108548

    Google Scholar 

  • Declerck SA, Coronel JS, Legendre P, Brendonck L (2011) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography 34(2):296–305

    Google Scholar 

  • De Oliveira-Junior JMB, Junior PDM, Dias-Silva K et al (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:31–39

    Google Scholar 

  • De Paiva SD, De Marco P, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10(3):744–752

    Google Scholar 

  • Dijkstra KDB, Kalkman VJ (2012) Phylogeny, classification and taxonomy of European dragonflies and damselflies (Odonata): a review. Org Divers Evol 12(3):209–227

    Google Scholar 

  • Dijkstra K, Lewington R (2006) Field guide to the dragonflies of Britain and Europe. British Wild Life Publishing, Gillingham

    Google Scholar 

  • Dijkstra KDB, Kalkman VJ, Dow RA, Stokvis FR, Van Tol J (2014) Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Syst Entomol 39(1):68–96

    Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182

    PubMed  Google Scholar 

  • Dumont HJ (1991) Odonata of the Levant, vol 5. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob Chang Biol 13(5):942–957

    Google Scholar 

  • Epele LB, Brand C, Miserendino ML (2019) Ecological drivers of alpha and beta diversity of freshwater invertebrates in arid and semiarid Patagonia (Argentina). Sci Total Environ 678:62–73

    CAS  PubMed  Google Scholar 

  • Eslami Barzoki Z, Ebrahimi M, Sadeghi S (2020) Odonata diversity and species assemblages in the Northwest Central Plateau of Iran. J Insect Conserv 24(3):459–471

    Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13(3):252–264

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Google Scholar 

  • Florencio M, Díaz-Paniagua C, Gómez-Rodríguez C, Serrano L (2014) Biodiversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conserv Divers 7(1):4–21

    Google Scholar 

  • Garcillán PP, Ezcurra E (2003) Biogeographic regions and β-diversity of woody dryland legumes in the Baja California peninsula. J Veg Sci 14(6):859–868

    Google Scholar 

  • Gleick PH (1996) Water resources. Encyclopedia of climate, weather 817–823

  • Graham CH, Fine PV (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11(12):1265–1277

    PubMed  Google Scholar 

  • Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Int J Odonatol 11(2):131–153

    Google Scholar 

  • Heino J, Grönroos M (2013) Does environmental heterogeneity affect species co-occurrence in ecological guilds across stream macroinvertebrate metacommunities? Ecography 36(8):926–936

    Google Scholar 

  • Heino J, Alahuhta J, Fattorini S, Schmera D (2019) Predicting beta diversity of terrestrial and aquatic beetles using ecogeographical variables: insights from the replacement and richness difference components. J Biogeogr 46(2):304–315

    Google Scholar 

  • Heiser M, Schmitt T (2009) Do different dispersal capacities influence the biogeography of the western Palearctic dragonflies (Odonata)? Biol J Lin Soc 99(1):177–195

    Google Scholar 

  • Hering D, Haidekker A, Schmidt-Kloiber A et al (2010) Monitoring the responses of freshwater ecosystems to climate change. In: Martin K, Richard WB, Brian M (eds) Climate change impacts on freshwater ecosystems. Wiley, Chichester, pp 84–118

    Google Scholar 

  • Hill MJ, Heino J, White JC, Ryves DB, Wood PJ (2019) Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol Conserv 237:348–357

    Google Scholar 

  • Hribar LJ, DeMay DJ, Lund UJ (2010) The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. J Vector Ecol 35(2):339–346

    PubMed  Google Scholar 

  • Jakob C, Suhling F (1999) Risky times? Mortality during emergence in two species of dragonflies (Odonata: Gomphidae, Libellulidae). Aquat Insects 21(1):1–10

    Google Scholar 

  • Jeffries M (2005) Local-scale turnover of pond insects: intra-pond habitat quality and inter-pond geometry are both important. Hydrobiologia 543(1):207–220

    Google Scholar 

  • Johansson F, Bini L, Coiffard P, Svanbäck R, Wester J, Heino J (2019) Environmental variables drive differences in the beta diversity of dragonfly assemblages among urban stormwater ponds. Ecol Indic 106:105529

    Google Scholar 

  • Juen L, Cabette HSR, De Marco P (2007) Odonate assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia 579(1):125–134

    Google Scholar 

  • Júnior PDM, Batista JD, Cabette HSR (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS ONE 10(4):e0123023

    Google Scholar 

  • Kabir EB, Bashari H, Bassiri M, Mosaddeghi MR (2020) Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran. Soil Till Res 197:104478

    Google Scholar 

  • Keil P, Simova I, Hawkins BA (2008) Water-energy and the geographical species richness pattern of European and North African dragonflies (Odonata). Insect Conserv Divers 1(1):142–150

    Google Scholar 

  • Khelifa R, Zebsa R, Amari H, Mellal M (2013) Does wind affect emergence site selection in Odonata? Afr Entomol 21(2):383–387

    Google Scholar 

  • Kietzka GJ, Pryke JS, Samways MJ (2018) Comparative effects of urban and agricultural land transformation on Odonata assemblages in a biodiversity hotspot. Basic Appl Ecol 33:89–98

    Google Scholar 

  • Kietzka GJ, Pryke JS, Gaigher R, Samways MJ (2019) Applying the umbrella index across aquatic insect taxon sets for freshwater assessment. Ecol Indic 107:105655

    Google Scholar 

  • Le Gall M, Fournier M, Chaput-Bardy A, Husté A (2018) Determinant landscape-scale factors on pond odonate assemblages. Freshw Biol 63(3):306–317

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–613

    Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur RH, Wilson EO (2001) The theory of island biogeography, vol 1. Princeton University Press, Princeton

    Google Scholar 

  • Manion G, Lisk M, Ferrier S, Lugilde K, Fitzpatrick M, Fitzpatrick M, Rcpp I (2017) Package ‘gdm’, A toolkit with functions to fit, plot, and summarize Generalized Dissimilarity Models: CRAN Repository, R

  • Mason NA (2017) Effects of wind, ambient temperature and sun position on damselfly flight activity and perch orientation. Anim Behav 124:175–181

    Google Scholar 

  • McCauley SJ (2008) Slow, fast and in between: habitat distribution and behaviour of larvae in nine species of libellulid dragonfly. Freshw Biol 53(2):253–263

    Google Scholar 

  • Miguel TB, Oliveira-Junior JMB, Ligeiro R, Juen L (2017) Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecol Indic 81:555–566

    CAS  Google Scholar 

  • Mirzaei A, Saghafian B, Mirchi A, Madani K (2019) The Groundwater‒Energy‒Food Nexus in Iran’s Agricultural Sector: implications for water security. Water 11(9): 1835

  • Monteiro CdS, Couceiro SRM, Hamada N, Juen L (2013) Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. Int J Odonatol 16(2):135–144

    Google Scholar 

  • Nagy HB, László Z, Szabó F, Szőcs L, Dévai G, Tóthmérész B (2019) Landscape-scale terrestrial factors are also vital in shaping Odonata assemblages of watercourses. Sci Rep 9(1):1–8

    Google Scholar 

  • Novelo-Gutiérrez R, Gómez-Anaya JA (2009) A comparative study of Odonata (Insecta) assemblages along an altitudinal gradient in the Sierra de Coalcomán Mountains, Michoacán, Mexico. Biodivers Conserv 18(3):679–698

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104(1):59–70

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938

    Google Scholar 

  • Ott J (2010) Dragonflies and climatic change–recent trends in Germany and Europe. BioRisk 5:253–286

    Google Scholar 

  • Pennifold MG, Williams KJ, Pinder AM, Harwood TD, Manion G, Ferrier S (2017) Whole-landscape modelling of compositional turnover in aquatic invertebrates informs conservation gap analysis: an example from south-western Australia. Freshw Biol 62(8):1359–1376

    Google Scholar 

  • Perez Rocha M, Bini LM, Domisch S et al (2018) Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. J Biogeogr 45(12):2744–2754

    Google Scholar 

  • Petersen RC (1992) The RCE: a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshw Biol 27(2):295–306

    Google Scholar 

  • Pires MM, Stenert C, Maltchik L (2018) Drivers of beta diversity of Odonata along a forest–grassland transition in southern Brazilian coastal ponds. Freshw Sci 37(2):357–366

    Google Scholar 

  • Raebel EM, Merckx T, Feber RE, Riordan P, Thompson DJ, Macdonald DW (2012) Multi-scale effects of farmland management on dragonfly and damselfly assemblages of farmland ponds. Agr Ecosyst Environ 161:80–87

    Google Scholar 

  • Reid AJ, Carlson AK, Creed IF et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94(3):849–873

    PubMed  Google Scholar 

  • Remsburg AJ, Turner MG (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J N Am Benthol Soc 28(1):44–56

    Google Scholar 

  • Renner S, Périco E, Dalzochio MS, Sahlén G (2018a) Ecoregions within the Brazilian Pampa biome reflected in Odonata species assemblies. Austral Ecol. https://doi.org/10.1111/aec.12680

    Article  Google Scholar 

  • Renner S, Périco E, Dalzochio MS, Sahlén G (2018b) Water body type and land cover shape the dragonfly communities (Odonata) in the Pampa biome, Rio Grande do Sul, Brazil. J Insect Conserv 22:113–125

    Google Scholar 

  • Richardson DM, Whittaker RJ (2010) Conservation biogeography–foundations, concepts and challenges. Divers Distrib 16(3):313–320

    Google Scholar 

  • Rocha-Ortega M, Rodríguez P, Córdoba-Aguilar A (2019) Spatial and temporal effects of land use change as potential drivers of odonate community composition but not species richness. Biodivers Conserv 28(2):451–466

    Google Scholar 

  • Rocha-Ortega M, Rodríguez P, Bried J, Abbott J, Córdoba-Aguilar A (2020) Why do bugs perish? Range size and local vulnerability traits as surrogates of Odonata extinction risk. Proc R Soc B 287(1924):20192645

    PubMed  Google Scholar 

  • Rosauer DF, Ferrier S, Williams KJ, Manion G, Keogh JS, Laffan SW (2014) Phylogenetic generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities. Ecography 37(1):21–32

    Google Scholar 

  • Samways MJ, Deacon C, Kietzka GJ, Pryke JS, Vorster C, Simaika JP (2020) Value of artificial ponds for aquatic insects in drought-prone southern Africa: a review. Biodivers Conserv 29:3131–3150

    Google Scholar 

  • Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers Conserv 18(5):1171–1185

    Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31(1):67–80

    PubMed  Google Scholar 

  • Tang Z, Engel B, Pijanowski B, Lim K (2005) Forecasting land use change and its environmental impact at a watershed scale. J Environ Manag 76(1):35–45

    CAS  Google Scholar 

  • Termaat T, van Strien AJ, van Grunsven RH et al (2019) Distribution trends of European dragonflies under climate change. Divers Distrib 25(6):936–950

    Google Scholar 

  • Thomas JA, Telfer M, Roy DB et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303(5665):1879–1881

    CAS  PubMed  Google Scholar 

  • Travis J (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond 270(1514):467–473

    CAS  Google Scholar 

  • Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecol Biogeogr 23(9):1031–1045

    Google Scholar 

  • Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol Biogeogr 24(11):1329–1339

    Google Scholar 

  • Wahizatul A, Long S, Ahmad A (2011) Composition and distribution of aquatic insect communities in relation to water quality in two freshwater streams of Hulu Terengganu, Terengganu. J Sustain Sci Manag 6(1):148–155

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains. Oregon California Ecol Monogr 30(3):279–338

    Google Scholar 

  • Worthen WB, Jones CM (2007) The effects of wind speed, competition, and body size on perch height selection in a guild of Libellulidae species (Odonata). Int J Odonatol 10(2):257–272

    Google Scholar 

  • Zohary M (1973) Geobotanical foundations of the Middle East. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

Download references

Acknowledgements

We are very thankful to Mohammad Eslami, Fatemeh Sadeghi, Mahnaz Talebi, and Zahra Eslami for their field assistance. Also, we are grateful to Hamid Reza Zolfaghari from the Khansar Ministry of Agriculture that provides us accommodation during our field trips.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehregan Ebrahimi or Saber Sadeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami Barzoki, Z., Ebrahimi, M., Clayton, J. et al. Phylogenetic beta diversity of Odonata assemblages in the extreme condition of Central Iran. J Insect Conserv 25, 175–187 (2021). https://doi.org/10.1007/s10841-020-00290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-020-00290-8

Keywords

Navigation