Skip to main content
Log in

Self-similar Blow-Up Profiles for a Reaction–Diffusion Equation with Critically Strong Weighted Reaction

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We classify the self-similar blow-up profiles for the following reaction–diffusion equation with critical strong weighted reaction and unbounded weight:

$$\begin{aligned} \partial _tu=\partial _{xx}(u^m) + |x|^{\sigma }u^p, \end{aligned}$$

posed for \(x\in {\mathbb {R}}\), \(t\ge 0\), where \(m>1\), \(0<p<1\) such that \(m+p=2\) and \(\sigma >2\) completing the analysis performed in a recent work where this very interesting critical case was left aside. We show that finite time blow-up solutions in self-similar form exist for \(\sigma >2\). Moreover all the blow-up profiles have compact support and their supports are localized: there exists an explicit \(\eta >0\) such that any blow-up profile satisfies \(\mathrm{supp}\,f\subseteq [0,\eta ]\). This property is unexpected and contrasting with the range \(m+p>2\). We also classify the possible behaviors of the profiles near the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iagar, R.G., Sánchez, A.: Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction. Adv. Nonlinear Stud. 20(4), 867–894 (2020)

    Article  MathSciNet  Google Scholar 

  2. Fujita, H.: On the blow-up of solutions of the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sec. IA Math. 16, 105–113 (1966)

    Google Scholar 

  3. Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhauser Advanced Texts, Birkhauser Verlag, Basel (2007)

  4. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-up in quasilinear parabolic problems, de Gruyter Expositions in Mathematics, 19. W. de Gruyter, Berlin (1995)

    Book  Google Scholar 

  5. Galaktionov, V.A., Vázquez, J.L.: Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math 50(1), 1–67 (1997)

    Article  MathSciNet  Google Scholar 

  6. Baras, P., Kersner, R.: Local and global solvability of a class of semilinear parabolic equations. J. Differ. Equ. 68, 238–252 (1987)

    Article  MathSciNet  Google Scholar 

  7. Bandle, C., Levine, H.: On the existence and nonexistence of global solutions of reaction–diffusion equations in sectorial domains. Trans. Am. Math. Soc. 316, 595–622 (1989)

    Article  MathSciNet  Google Scholar 

  8. Levine, H., Meier, P.: The value of the critical exponent for reaction–diffusion equations in cones. Arch. Ration. Mech. Anal. 109(1), 73–80 (1990)

    Article  MathSciNet  Google Scholar 

  9. Pinsky, R.G.: Existence and nonexistence of global solutions for \(u_t=\Delta u+a(x)u^p\) in \({\mathbb{R}}^d\). J. Differ. Equ. 133(1), 152–177 (1997)

    Article  Google Scholar 

  10. Pinsky, R.G.: The behavior of the life span for solutions to \(u_t=\Delta u+a(x)u^p\) in \({\mathbb{R}}^d\). J. Differ. Equ. 147(1), 30–57 (1998)

    Article  MathSciNet  Google Scholar 

  11. Suzuki, R.: Existence and nonexistence of global solutions of quasilinear parabolic equations. J. Math. Soc. Jpn. 54(4), 747–792 (2002)

    Article  MathSciNet  Google Scholar 

  12. Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Scuola Norm. Sup. Pisa 18, 12 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Andreucci, D., Tedeev, A.F.: Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differ. Equ. 10(1), 89–120 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ferreira, R., de Pablo, A., Vázquez, J.L.: Classification of blow-up with nonlinear diffusion and localized reaction. J. Differ. Equ. 231(1), 195–211 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kang, X., Wang, W., Zhou, X.: Classification of solutions of porous medium equation with localized reaction in higher space dimensions. Differ. Integral Equ. 24(9–10), 909–922 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Liang, Z.: On the critical exponents for porous medium equation with a localized reaction in high dimensions. Commun. Pure Appl. Anal. 11(2), 649–658 (2012)

    Article  MathSciNet  Google Scholar 

  17. Bai, X., Zhou, S., Zheng, S.: Cauchy problem for fast diffusion equation with localized reaction. Nonlinear Anal. 74(7), 2508–2514 (2011)

    Article  MathSciNet  Google Scholar 

  18. Guo, J.-S., Lin, C.-S., Shimojo, M.: Blow-up behavior for a parabolic equation with spatially dependent coefficient. Dyn. Syst. Appl. 19(3–4), 415–433 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Guo, J.-S., Lin, C.-S., Shimojo, M.: Blow-up for a reaction-diffusion equation with variable coefficient. Appl. Math. Lett. 26(1), 150–153 (2013)

    Article  MathSciNet  Google Scholar 

  20. Guo, J.-S., Shimojo, M.: Blowing up at zero points of potential for an initial boundary value problem. Commun. Pure Appl. Anal. 10(1), 161–177 (2011)

    Article  MathSciNet  Google Scholar 

  21. Guo, J.-S., Souplet, P.: Excluding blowup at zero points of the potential by means of Liouville-type theorems. J. Differ. Equ. 265(10), 4942–4964 (2018)

    Article  MathSciNet  Google Scholar 

  22. de Pablo, A., Vázquez, J.L.: The balance between strong reaction and slow diffusion. Commun. Partial Differ. Equ. 15(2), 159–183 (1990)

    Article  MathSciNet  Google Scholar 

  23. de Pablo, A., Vázquez, J.L.: Travelling waves and finite propagation in a reaction–diffusion equation. J. Differ. Equ. 93(1), 19–61 (1991)

    Article  MathSciNet  Google Scholar 

  24. de Pablo, A., Vázquez, J.L.: An overdetermined initial and boundary-value problem for a reaction–diffusion equation. Nonlinear Anal. 19(3), 259–269 (1992)

    Article  MathSciNet  Google Scholar 

  25. de Pablo, A.: Large-time behaviour of solutions of a reaction–diffusion equation. Proc. R. Soc. Edinb. Sect. A 124(2), 389–398 (1994)

    Article  MathSciNet  Google Scholar 

  26. Iagar, R.G., Sánchez, A.: Blow up profiles for a quasilinear reaction–diffusion equation with weighted reaction with linear growth. J. Dyn. Differ. Equ. 31(4), 2061–2094 (2019)

    Article  MathSciNet  Google Scholar 

  27. Iagar, R.G., Sánchez, A.: Blow up profiles for a quasilinear reaction-diffusion equation with weighted reaction. J. Differ. Equations 272(1), 560–605 (2021)

    Article  MathSciNet  Google Scholar 

  28. Iagar, R.G., Sánchez, A.: Blow up profiles for a reaction–diffusion equation with critical weighted reaction. Nonlinear Anal. 191, paper no. 111628, p. 24 (2020)

  29. Iagar, R. G., Muñoz, A. I., Sánchez, A.: Existence versus non-existence of solutions to a reaction–diffusion equation with weighted strong reaction (in preparation) (2020)

  30. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Monographs in Mathematics, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  31. Lacey, A.A.: The form of blow-up for nonlinear parabolic equations. Proc. R. Soc. Edinb. Sect. A 98(1–2), 183–202 (1984)

    Article  MathSciNet  Google Scholar 

  32. Giga, Y., Umeda, N.: On blow-up at space infinity for semilinear heat equations. J. Math. Anal. Appl. 316, 538–555 (2006)

    Article  MathSciNet  Google Scholar 

  33. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  34. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, Berlin (1982)

    Book  Google Scholar 

  35. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 1st edn. Springer, New York (1990)

    Book  Google Scholar 

  36. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  Google Scholar 

  37. Kelley, Al: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3(4), 546–570 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. S. is partially supported by the Spanish Project MTM2017-87596-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Gabriel Iagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iagar, R.G., Sánchez, A. Self-similar Blow-Up Profiles for a Reaction–Diffusion Equation with Critically Strong Weighted Reaction. J Dyn Diff Equat 34, 1139–1172 (2022). https://doi.org/10.1007/s10884-020-09920-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09920-w

Keywords

Mathematics Subject Classification

Navigation