Skip to main content
Log in

Green Synthesis of ZnO/SnO2 Nanocomposites Using Pine Leaves and Their Application for the Removal of Heavy Metals from Aqueous Media

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, ZnO/SnO2 nanocomposites were fabricated via a green and simple route using pine tree leaves for the first time. No expensive reagent or hazardous solvent was used for synthesis of nanocomposites and only natural and eco-friendly materials were utilized. ZnO/SnO2 nanocomposites were characterized by XRD, TEM, SEM and EDS. The adsorption performance of ZnO/SnO2 nanocomposites was studied for the efficient removal of Cu2+, Pb2+ and Zn2+ metal ions. To achieve maximum adsorption capacity of metal ions, the influences of several operating conditions including pH value, ZnO/SnO2 nanocomposites dosage, initial concentration of metal ions and contact time were investigated. Also, equilibrium and kinetics models of metal ions to nanocomposites were studied. Adsorption process could be well defined by the Langmuir isotherm with R2 of 0.88, 0.94 and 0.94 for removal of Cu2+, Pb2+ and Zn2+ ions; respectively. The kinetic data fitted the pseudo-second-order model with the R2 value of 0.99, 1 and 0.99 for removal of Cu2+, Pb2+ and Zn2+ ions; respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. K. Sarma, S. Sen Gupta, and K. G. Bhattacharyya (2019). Environ. Sci. Pollut. Res. 26, 6245.

    CAS  Google Scholar 

  2. Y. Liu, Y. Feng, R. Wang, T. Jiao, J. Li, Y. Rao, Q. Zhang, Z. Bai, and Q. Peng (2019). ACS Omega 4, 12098.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. R. M. Abdelhameed, R. A. Ismail, M. El-Naggar, E. S. Zarie, R. Abdelaziz, and M. T. El Sayed (2019). Microporous Mesoporous Mater. 279, 26.

    CAS  Google Scholar 

  4. V. Nejadshafiee and M. R. Islami (2020). Environ. Sci. Pollut. Res. 27, 1625.

    CAS  Google Scholar 

  5. L. Ma, Q. Wang, S. M. Islam, Y. Liu, S. Ma, and M. G. Kanatzidis (2016). J. Am. Chem. Soc. 138, 2858.

    CAS  PubMed  Google Scholar 

  6. F. P. Fato, D. W. Li, L. J. Zhao, K. Qiu, and Y. T. Long (2019). ACS Omega 4, 7543.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. D. M. Fleece and N. B. Robinson (2007). J. Paediatr. Child Health 43, 409.

    PubMed  Google Scholar 

  8. J. Baby, J. S. Raj, E. T. Biby, S. M. V. Jeevitha, S. Ajisha, and S. S. Rajan (2010). Int. J. Biol. Chem. Sci. 4, 939.

    Google Scholar 

  9. M. Zhao, Y. Xu, C. Zhang, H. Rong, and G. Zeng (2016). Appl. Microbiol. Biotechnol. 100, 6509.

    CAS  PubMed  Google Scholar 

  10. S. Perumal, R. Atchudan, D. H. Yoon, J. Joo, and I. W. Cheong (2019). Ind. Eng. Chem. Res. 58, 9900.

    CAS  Google Scholar 

  11. C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad (2017). J. Environ. Chem. Eng. 5, 2782.

    CAS  Google Scholar 

  12. A. V. Samrot, J. L. A. Angalene, S. M. Roshini, P. Raji, S. M. Stefi, R. Preethi, A. J. Selvarani, and A. Madankumar (2019). J. Clust. Sci. 30, 1599.

    CAS  Google Scholar 

  13. M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, and E. Comini (2006). Sens. Actuators B. 118, 208.

    CAS  Google Scholar 

  14. A. Fakhri, S. Behrouz, and M. Pourmand (2015). J. Photochem. Photobiol. B 149, 45.

    CAS  PubMed  Google Scholar 

  15. Y. Wang, L. Shi, H. Wu, Q. Li, W. Hu, Z. Zhang, L. Huang, J. Zhang, D. Chen, S. Deng, S. Tan, and Z. Jiang (2019). ACS Omega 4, 15373.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. T. W. Quadri, L. O. Olasunkanmi, O. E. Fayemi, M. M. Solomon, and E. E. Ebenso (2017). ACS Omega 2, 8421.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Titus and E. J. J. Samuel (2019). J. Clust. Sci. 30, 1335.

    CAS  Google Scholar 

  18. M. Honarmand, M. Golmohammadi, and J. Hafezi-bakhtiari (2020). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11086-3.

    Article  Google Scholar 

  19. M. Golmohammadi, M. Honarmand, and S. Ghanbari (2020). Spectrochim. Acta A 229, 117961.

    CAS  Google Scholar 

  20. M. H. Sayadi, S. Sobhani, and H. Shekari (2019). J. Clean. Prod. 232, 127.

    CAS  Google Scholar 

  21. D. Barreca, E. Comini, A. P. Ferrucci, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, and E. Tondello (2007). Chem. Mater. 19, 5642.

    CAS  Google Scholar 

  22. P. Lu, W. Zhou, Y. Li, J. Wang, and P. Wu (2017). Appl. Surf. Sci. 399, 396.

    CAS  Google Scholar 

  23. Y. C. Zhang, Z. N. Du, K. W. Li, M. Zhang, and D. D. Dionysiou (2011). ACS Appl. Mater. Interfaces. 3, 1528.

    CAS  PubMed  Google Scholar 

  24. L. Liu, C. Dong, K. L. Wu, Y. Ye, and X. W. Wei (2014). Mater. Lett. 129, 170.

    CAS  Google Scholar 

  25. E. Darezereshki, M. Alizadeh, F. Bakhtiari, M. Schaffie, and M. Ranjbar (2011). Appl Clay Sci 54, 107.

    CAS  Google Scholar 

  26. R. Augustine, F. Sarry, N. Kalarikkal, S. Thomas, L. Badie, and D. Rouxel (2016). Nano–Micro Lett. 8, 282.

    CAS  Google Scholar 

  27. M. Rajapriya, S. A. Sharmili, R. Baskar, R. Balaji, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, K. F. Alanzi, and B. Vaseeharan (2019). J Clust Sci. https://doi.org/10.1007/s10876-019-01686-6.

    Article  Google Scholar 

  28. H. Agarwal, S. Venkat Kumar, and S. Rajeshkuma (2017). Resour. Technol. 3, 406.

    Google Scholar 

  29. M. Honarmand, M. Golmohammadi, and A. Naeimi (2020). Mater. Chem. Phys. 241, 122416.

    CAS  Google Scholar 

  30. C. G. Udayabhanu, G. Nagaraju, H. Nagabhushana, D. Suresh, C. Anupama, G. K. Raghu, and S. C. Sharma (2017). Ceram. Int. 43, 11656.

    CAS  Google Scholar 

  31. N. K. Hemanth Kumar, M. Murali, A. Satish, S. Brijesh Singh, H. G. Gowtham, H. M. Mahesh, T. R. Lakshmeesha, K. N. Amruthesh, and S. Jagannath (2020). J. Clust. Sci. 31, 523.

    CAS  Google Scholar 

  32. F. A. Neis, F. de Costa, A. T. de Araújo, J. P. Fett, and A. G. Fett-Neto (2019). Ind. Crops Prod. 130, 248.

    CAS  Google Scholar 

  33. I. Süntar, I. Tumen, O. Ustün, H. Keleş, and E. Küpeli Akkol (2012). J. Ethnopharmacol. 139, 533.

    PubMed  Google Scholar 

  34. J. H. Park, J. J. Wang, S. H. Kim, S. W. Kang, C. Y. Jeong, J. R. Jeon, K. H. Park, J. S. Cho, R. D. Delaune, and D. C. Seo (2019). J. Colloid Interface Sci. 553, 298.

    CAS  PubMed  Google Scholar 

  35. I. Juranović-Cindrić, M. Zeiner, A. Starčević, Z. Liber, G. Rusak, M. Idžojtić, and G. Stingeder (2018). J. Trace Elem. Med. Biol. 48, 190.

    PubMed  Google Scholar 

  36. M. Sadeghi Afjeh, H. Fallah Huseini, Y. Tajalizadekhoob, M. Mirarefin, F. Sharifi, E. Taheri, S. Saeednia, B. Larijani, and H. Fakhrzadeh (2014). J. Med. Plants 13, 22.

    Google Scholar 

  37. G. Liu, X. Bai, and H. Lv (2017). Appl. Organomet. Chem. 31, 1.

    CAS  Google Scholar 

  38. R. Kumar, G. Ghoshal, A. Jain, and M. Goyal (2017). J. Nanomed. Nanotechnol. 08, 452.

    Google Scholar 

  39. K. Krishnaswamy and V. Orsat (2015). Ind. Crops Prod. 66, 131.

    CAS  Google Scholar 

  40. A. Sedri, A. Naeimi, and S. Z. Mohammadi (2018). Carbohydr. Polym. 199, 236.

    CAS  PubMed  Google Scholar 

  41. A. Naeimi, M. Honarmand, and A. Sedri (2019). Ultrason. Sonochem. 50, 331.

    CAS  PubMed  Google Scholar 

  42. S. A. Noghi, A. Naeimi, and H. Hamidian (2018). Polymer 149, 229.

    CAS  Google Scholar 

  43. A. Naeimi, A. Amiri, and Z. Ghasemi (2017). J. Taiwan Inst. Chem. Eng. 80, 107.

    CAS  Google Scholar 

  44. F. Gu, S. F. Wang, C. F. Song, M. K. Lü, Y. X. Qi, G. J. Zhou, D. Xu, and D. R. Yuan (2003). Chem. Phys. Lett. 372, 451.

    CAS  Google Scholar 

  45. R. Saravanan, M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen (2015). J. Colloid Interface Sci. 452, 126.

    CAS  PubMed  Google Scholar 

  46. L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, and C. Wei (2019). J. Hazard. Mater. 368, 42.

    CAS  PubMed  Google Scholar 

  47. J. Ebrahimian, M. Mohsennia, and M. Khayatkashani (2020). Mater. Lett. 263, 127255.

    CAS  Google Scholar 

  48. Z. Wang, J. Zhang, T. Wen, X. Liu, Y. Wang, H. Yang, J. Sun, J. Feng, S. Dong, and J. Sun (2020). Sci. Total Environ. 699, 134341.

    CAS  PubMed  Google Scholar 

  49. H. Aydin, Y. Bulut, and Ç. Yerlikaya (2008). J. Environ. Manag. 87, 37.

    CAS  Google Scholar 

  50. L. Giraldo, A. Erto, and J. C. Moreno-Piraján (2013). Adsorption 19, 465.

    CAS  Google Scholar 

  51. N. N. Nassar (2010). J. Hazard. Mater. 184, 538.

    CAS  PubMed  Google Scholar 

  52. J. Wang, G. Liu, T. Li, and C. Zhou (2015). RSC Adv. 5, 29859.

    Google Scholar 

  53. C. M. Chou and H. L. Lien (2011). J. Nanopart. Res. 13, 2099.

    CAS  Google Scholar 

  54. N. Ghasemi, M. Ghasemi, S. Moazeni, P. Ghasemi, N. S. Alharbi, V. K. Gupta, S. Agarwal, I. V. Burakova, and A. G. Tkachev (2018). J. Ind. Eng. Chem. 62, 302.

    CAS  Google Scholar 

  55. Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei (2002). Chem. Phys. Lett. 357, 263.

    CAS  Google Scholar 

  56. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu (2010). J. Colloid Interface Sci. 349, 293.

    CAS  PubMed  Google Scholar 

  57. N. Sezgin, M. Sahin, A. Yalcin, and Y. Koseoglu (2013). Ekoloji 96, 89.

    Google Scholar 

  58. J. Li, S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li, and X. Wang (2012). ACS Appl. Mater. Interfaces. 4, 4991.

    CAS  PubMed  Google Scholar 

  59. S. H. Huang and D. H. Chen (2009). J. Hazard. Mater. 163, 174.

    CAS  PubMed  Google Scholar 

  60. L. Bai, H. Hu, W. Fu, J. Wan, X. Cheng, L. Zhuge, L. Xiong, and Q. Chen (2011). J. Hazard. Mater. 195, 261.

    CAS  PubMed  Google Scholar 

  61. Z. Zheng, Y. Huyan, H. Li, S. Sun, and Y. Xu (2020). Colloids Surf. A 586, 127065.

    Google Scholar 

Download references

Acknowledgements

The authors is thankful to the Birjand University of Technology and University of Jiroft for approval and financial support of the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moones Honarmand.

Ethics declarations

Conflict of interest

The authors of this paper have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honarmand, M., Amini, M., Iranfar, A. et al. Green Synthesis of ZnO/SnO2 Nanocomposites Using Pine Leaves and Their Application for the Removal of Heavy Metals from Aqueous Media. J Clust Sci 33, 301–310 (2022). https://doi.org/10.1007/s10876-020-01960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01960-y

Keywords

Navigation