Skip to main content
Log in

The impact of patient, embryo, and translocation characteristics on the ploidy status of young couples undergoing preimplantation genetic testing for structural rearrangements (PGT-SR) by next generation sequencing (NGS)

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the factors that affect the incidence of euploid balanced embryos and interchromosomal effect (ICE) in carriers of different structural rearrangements.

Methods

This retrospective study includes 95 couples with reciprocal translocations (RecT) and 36 couples with Robertsonian translocations (RobT) undergoing Preimplantation Genetic Testing for Structural Rearrangements (PGT-SR) between March 2016 and July 2019. Next-generation sequencing (NGS) was the technique used coupled with trophectoderm (TE) biopsy. Only cases with females under 38 years were included. A total of 532 blastocysts were evaluated.

Results

The euploidy rate was similar in RobT when compared with RecT carriers [57/156 (36.5%) vs. 112/376 (29.8%), p = 0.127]. The pure ICE rate was significantly higher in RobT carriers [48/156 (30.8%) vs. 53/376 (14.1%), p < 0.001] than it was in RecT carriers. Female age was the independent factor for the probability of obtaining a euploid embryo in RecT and RobT carriers, and increasing female age decreases the probability of obtaining a euploid embryo. In RecT carriers, no significant differences were observed in euploidy rates, pure ICE, or combined ICE according to the length of the translocated fragment and the chromosome group. However, total ICE was significantly lower when there was a breakpoint in the short chromosome arm together with a breakpoint in the long arm [(44/158 (27.8%) for pq or qp, 51/155 (32.9%) for pp and 30/63 (47.6%) for qq; p = 0.02].

Conclusion

The incidence of euploid/balanced blastocysts was similar in both types of translocations. However, there was a significant increase in pure ICE in RobT compared to RecT carriers. In RecT carriers, the presence of the breakpoints in the long arm of the chromosomes involved in the rearrangement resulted in a higher total ICE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Dyke DL, Weiss L, Roberson JR, Babu VR. The frequency and mutation rate of balanced autosomal rearrangements in man estimated from prenatal genetic studies for advanced maternal age. Am J Hum Genet. 1983;35(2):301–8.

    PubMed  PubMed Central  Google Scholar 

  2. Vasilevska M, Ivanovska E, Kubelka Sabit K, Sukarova-Angelovska E, Dimeska G. The incidence and type of chromosomal translocations from prenatal diagnosis of 3800 patients in the republic of macedonia. Balkan J Med Genet: BJMG. 2013;16(2):23–8. https://doi.org/10.2478/bjmg-2013-0027.

    Article  CAS  PubMed  Google Scholar 

  3. Scriven PN, Bint SM, Davies AF, Ogilvie CM. Meiotic outcomes of three-way translocations ascertained in cleavage-stage embryos: refinement of reproductive risks and implications for PGD. Eur J Human Genet: EJHG. 2014;22(6):748–53. https://doi.org/10.1038/ejhg.2013.237.

    Article  CAS  Google Scholar 

  4. Neri G, Serra A, Campana M, Tedeschi B. Reproductive risks for translocation carriers: cytogenetic study and analysis of pregnancy outcome in 58 families. Am J Med Genet. 1983;16(4):535–61. https://doi.org/10.1002/ajmg.1320160412.

    Article  CAS  PubMed  Google Scholar 

  5. Scriven PN, Flinter FA, Khalaf Y, Lashwood A, Mackie Ogilvie C. Benefits and drawbacks of preimplantation genetic diagnosis (PGD) for reciprocal translocations: lessons from a prospective cohort study. Eur J Human Genet: EJHG. 2013;21(10):1035–41. https://doi.org/10.1038/ejhg.2013.9.

    Article  Google Scholar 

  6. Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009;24(5):1221–8. https://doi.org/10.1093/humrep/den488.

    Article  CAS  PubMed  Google Scholar 

  7. Fischer J, Colls P, Escudero T, Munne S. Preimplantation genetic diagnosis (PGD) improves pregnancy outcome for translocation carriers with a history of recurrent losses. Fertil Steril. 2010;94(1):283–9. https://doi.org/10.1016/j.fertnstert.2009.02.060.

    Article  PubMed  Google Scholar 

  8. Keymolen K, Staessen C, Verpoest W, Liebaers I, Bonduelle M. Preimplantation genetic diagnosis in female and male carriers of reciprocal translocations: clinical outcome until delivery of 312 cycles. Eur J Human Genet: EJHG. 2012;20(4):376–80. https://doi.org/10.1038/ejhg.2011.208.

    Article  Google Scholar 

  9. Ko DS, Cho JW, Park SY, Kim JY, Koong MK, Song IO, et al. Clinical outcomes of preimplantation genetic diagnosis (PGD) and analysis of meiotic segregation modes in reciprocal translocation carriers. Am J Med Genet Part A. 2010;152A(6):1428–33. https://doi.org/10.1002/ajmg.a.33368.

    Article  PubMed  Google Scholar 

  10. Kyu Lim C, Hyun Jun J, Mi Min D, Lee HS, Young Kim J, Koong MK, et al. Efficacy and clinical outcome of preimplantation genetic diagnosis using FISH for couples of reciprocal and Robertsonian translocations: the Korean experience. Prenat Diagn. 2004;24(7):556–61. https://doi.org/10.1002/pd.923.

    Article  PubMed  Google Scholar 

  11. Munne S, Morrison L, Fung J, Marquez C, Weier U, Bahce M, et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assist Reprod Genet. 1998;15(5):290–6. https://doi.org/10.1023/a:1022544511198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munne S, Sandalinas M, Escudero T, Fung J, Gianaroli L, Cohen J. Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril. 2000;73(6):1209–18. https://doi.org/10.1016/s0015-0282(00)00495-7.

    Article  CAS  PubMed  Google Scholar 

  13. Otani T, Roche M, Mizuike M, Colls P, Escudero T, Munné S. Preimplantation genetic diagnosis significantly improves the pregnancy outcome of translocation carriers with a history of recurrent miscarriage and unsuccessful pregnancies. Reprod BioMed Online. 2006;13(6):869–74. https://doi.org/10.1016/S1472-6483(10)61037-1.

    Article  PubMed  Google Scholar 

  14. Verlinsky Y, Tur-Kaspa I, Cieslak J, Bernal A, Morris R, Taranissi M, et al. Preimplantation testing for chromosomal disorders improves reproductive outcome of poor-prognosis patients. Reprod BioMed Online. 2005;11(2):219–25. https://doi.org/10.1016/s1472-6483(10)60961-3.

    Article  CAS  PubMed  Google Scholar 

  15. Bono S, Biricik A, Spizzichino L, Nuccitelli A, Minasi MG, Greco E, et al. Validation of a semiconductor next-generation sequencing-based protocol for preimplantation genetic diagnosis of reciprocal translocations. Prenat Diagn. 2015;35(10):938–44. https://doi.org/10.1002/pd.4665.

    Article  CAS  PubMed  Google Scholar 

  16. Fiorentino F, Spizzichino L, Bono S, Biricik A, Kokkali G, Rienzi L, et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod. 2011;26(7):1925–35. https://doi.org/10.1093/humrep/der082.

    Article  CAS  PubMed  Google Scholar 

  17. Tobler KJ, Brezina PR, Benner AT, Du L, Xu X, Kearns WG. Two different microarray technologies for preimplantation genetic diagnosis and screening, due to reciprocal translocation imbalances, demonstrate equivalent euploidy and clinical pregnancy rates. J Assist Reprod Genet. 2014;31(7):843–50. https://doi.org/10.1007/s10815-014-0230-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Cram DS, Shen J, Wang X, Zhang J, Song Z, et al. Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos. Biol Reprod. 2014;91(2):37. https://doi.org/10.1095/biolreprod.114.120576.

    Article  PubMed  Google Scholar 

  19. Lejeune J. Autosomal disorders. Pediatrics. 1963;32:326–37.

    CAS  PubMed  Google Scholar 

  20. Mateu-Brull E, Rodrigo L, Peinado V, Mercader A, Campos-Galindo I, Bronet F, et al. Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR). J Assist Reprod Genet. 2019;36(12):2547–55. https://doi.org/10.1007/s10815-019-01593-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jalbert P, Sele B, Jalbert H. Reciprocal translocations: a way to predict the mode of imbalanced segregation by pachytene-diagram drawing. Hum Genet. 1980;55(2):209–22. https://doi.org/10.1007/BF00291769.

    Article  CAS  PubMed  Google Scholar 

  22. Borm G, Mannaerts B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicentre trial. The European Orgalutran Study Group. Human Reprod. 2000;15(7):1490–8. https://doi.org/10.1093/humrep/15.7.1490.

    Article  CAS  Google Scholar 

  23. Serdarogullari M, Coban O, Boynukalin FK, Bilgin EM, Findikli N, Bahceci M. Successful application of a single warming protocol for embryos cryopreserved by either slow freezing or vitrification techniques. Syst Biol Reprod Med. 2019;65(1):12–9. https://doi.org/10.1080/19396368.2018.1487477.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Tao W, Li M, Liu H, Wu K, Ma S. Comparison of two protocols of blastocyst biopsy submitted to preimplantation genetic testing for aneuploidies: a randomized controlled trial. Arch Gynecol Obstet. 2019;299(5):1487–93. https://doi.org/10.1007/s00404-019-05084-1.

    Article  PubMed  Google Scholar 

  25. Faraut T, Mermet MA, Demongeot J, Cohen O. Cooperation of selection and meiotic mechanisms in the production of imbalances in reciprocal translocations. Cytogenet Cell Genet. 2000;88(1-2):15–21. https://doi.org/10.1159/000015476.

    Article  CAS  PubMed  Google Scholar 

  26. Anton E, Blanco J, Egozcue J, Vidal F. Sperm FISH studies in seven male carriers of Robertsonian translocation t(13;14)(q10;q10). Human Reprod. 2004;19(6):1345–51. https://doi.org/10.1093/humrep/deh232.

    Article  CAS  Google Scholar 

  27. Anton E, Blanco J, Vidal F. Meiotic behavior of three D;G Robertsonian translocations: segregation and interchromosomal effect. J Hum Genet. 2010;55(8):541–5. https://doi.org/10.1038/jhg.2010.67.

    Article  PubMed  Google Scholar 

  28. Anton E, Vidal F, Blanco J. Role of sperm FISH studies in the genetic reproductive advice of structural reorganization carriers. Hum Reprod. 2007;22(8):2088–92. https://doi.org/10.1093/humrep/dem152.

    Article  CAS  PubMed  Google Scholar 

  29. Anton E, Vidal F, Blanco J. Reciprocal translocations: tracing their meiotic behavior. Genet Med Off J Am Coll Med Genet. 2008;10(10):730–8. https://doi.org/10.1097/GIM.0b013e318187760f.

    Article  Google Scholar 

  30. Anton E, Vidal F, Egozcue J, Blanco J. Preferential alternate segregation in the common t(11;22)(q23;q11) reciprocal translocation: sperm FISH analysis in two brothers. Reprod BioMed Online. 2004;9(6):637–44. https://doi.org/10.1016/s1472-6483(10)61774-9.

    Article  PubMed  Google Scholar 

  31. Baccetti B, Capitani S, Collodel G, Estenoz M, Gambera L, Piomboni P. Infertile spermatozoa in a human carrier of robertsonian translocation 14;22. Fertil Steril. 2002;78(5):1127–30. https://doi.org/10.1016/s0015-0282(02)03379-4.

    Article  PubMed  Google Scholar 

  32. Baccetti B, Collodel G, Marzella R, Moretti E, Piomboni P, Scapigliati G, et al. Ultrastructural studies of spermatozoa from infertile males with Robertsonian translocations and 18, X, Y aneuploidies. Hum Reprod. 2005;20(8):2295–300. https://doi.org/10.1093/humrep/dei050.

    Article  CAS  PubMed  Google Scholar 

  33. Blanco J, Egozcue J, Clusellas N, Vidal F. FISH on sperm heads allows the analysis of chromosome segregation and interchromosomal effects in carriers of structural rearrangements: results in a translocation carrier, t(5;8)(q33;q13). Cytogenet Cell Genet. 1998;83(3-4):275–80. https://doi.org/10.1159/000015170.

    Article  CAS  PubMed  Google Scholar 

  34. Blanco J, Egozcue J, Vidal F. Interchromosomal effects for chromosome 21 in carriers of structural chromosome reorganizations determined by fluorescence in situ hybridization on sperm nuclei. Hum Genet. 2000;106(5):500–5. https://doi.org/10.1007/s004390000295.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Huang J, Liu P, Qiao J. Analysis of meiotic segregation patterns and interchromosomal effects in sperm from six males with Robertsonian translocations. J Assist Reprod Genet. 2007;24(9):406–11. https://doi.org/10.1007/s10815-007-9137-6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Machev N, Gosset P, Warter S, Treger M, Schillinger M, Viville S. Fluorescence in situ hybridization sperm analysis of six translocation carriers provides evidence of an interchromosomal effect. Fertil Steril. 2005;84(2):365–73. https://doi.org/10.1016/j.fertnstert.2005.03.026.

    Article  CAS  PubMed  Google Scholar 

  37. Mercier S, Morel F, Fellman F, Roux C, Bresson JL. Molecular analysis of the chromosomal equipment in spermatozoa of a 46, XY, t(7;8) (q11.21;cen) carrier by using fluorescence in situ hybridization. Hum Genet. 1998;102(4):446–51. https://doi.org/10.1007/s004390050719.

    Article  CAS  PubMed  Google Scholar 

  38. Morel F, Douet-Guilbert N, Roux C, Tripogney C, Le Bris MJ, De Braekeleer M, et al. Meiotic segregation of a t(7;8)(q11.21;cen) translocation in two carrier brothers. Fertil Steril. 2004;81(3):682–5. https://doi.org/10.1016/j.fertnstert.2003.07.034.

    Article  PubMed  Google Scholar 

  39. Morel F, Roux C, Bresson JL. FISH analysis of the chromosomal status of spermatozoa from three men with 45,XY,der(13;14)(q10;q10) karyotype. Mol Hum Reprod. 2001;7(5):483–8. https://doi.org/10.1093/molehr/7.5.483.

    Article  CAS  PubMed  Google Scholar 

  40. Oliver-Bonet M, Navarro J, Codina-Pascual M, Carrera M, Egozcue J, Benet J. Meiotic segregation analysis in a t(4;8) carrier: comparison of FISH methods on sperm chromosome metaphases and interphase sperm nuclei. Eur J Human Genet: EJHG. 2001;9(6):395–403. https://doi.org/10.1038/sj.ejhg.5200654.

    Article  CAS  Google Scholar 

  41. Rousseaux S, Chevret E, Monteil M, Cozzi J, Pelletier R, Delafontaine D, et al. Sperm nuclei analysis of a Robertsonian t(14q21q) carrier, by FISH, using three plasmids and two YAC probes. Hum Genet. 1995;96(6):655–60. https://doi.org/10.1007/BF00210294.

    Article  CAS  PubMed  Google Scholar 

  42. Rousseaux S, Chevret E, Monteil M, Cozzi J, Pelletier R, Devillard F, et al. Meiotic segregation in males heterozygote for reciprocal translocations: analysis of sperm nuclei by two and three colour fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;71(3):240–6. https://doi.org/10.1159/000134118.

    Article  CAS  PubMed  Google Scholar 

  43. Van Hummelen P, Manchester D, Lowe X, Wyrobek AJ. Meiotic segregation, recombination, and gamete aneuploidy assessed in a t(1;10)(p22.1;q22.3) reciprocal translocation carrier by three- and four-probe multicolor FISH in sperm. Am J Hum Genet. 1997;61(3):651–9. https://doi.org/10.1086/515516.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vozdova M, Oracova E, Musilova P, Kasikova K, Prinosilova P, Gaillyova R, et al. Sperm and embryo analysis of similar t(7;10) translocations transmitted in two families. Fertil Steril. 2011;96(1):e66–70. https://doi.org/10.1016/j.fertnstert.2011.04.042.

    Article  CAS  PubMed  Google Scholar 

  45. Wiland E, Midro AT, Panasiuk B, Kurpisz M. The analysis of meiotic segregation patterns and aneuploidy in the spermatozoa of father and son with translocation t(4;5)(p15.1;p12) and the prediction of the individual probability rate for unbalanced progeny at birth. J Androl. 2007;28(2):262–72. https://doi.org/10.2164/jandrol.106.000919.

    Article  PubMed  Google Scholar 

  46. Juchniuk de Vozzi MS, Santos SA, Pereira CS, Cuzzi JF, Laureano LA, Franco JG Jr, et al. Meiotic segregation and interchromosomal effect in the sperm of a double translocation carrier: a case report. Mol Cytogenet. 2009;2:24. https://doi.org/10.1186/1755-8166-2-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pellestor F, Imbert I, Andreo B, Lefort G. Study of the occurrence of interchromosomal effect in spermatozoa of chromosomal rearrangement carriers by fluorescence in-situ hybridization and primed in-situ labelling techniques. Human Reproduction. 2001;16(6):1155–64. https://doi.org/10.1093/humrep/16.6.1155.

    Article  CAS  PubMed  Google Scholar 

  48. Chelli MH, Ferfouri F, Boitrelle F, Albert M, Molina-Gomes D, Selva J, et al. High-magnification sperm selection does not decrease the aneuploidy rate in patients who are heterozygous for reciprocal translocations. J Assist Reprod Genet. 2013;30(4):525–30. https://doi.org/10.1007/s10815-013-9959-3.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Estop AM, Cieply K, Munne S, Surti U, Wakim A, Feingold E. Is there an interchromosomal effect in reciprocal translocation carriers? Sperm FISH studies. Hum Genet. 2000;106(5):517–24. https://doi.org/10.1007/s004390000275.

    Article  CAS  PubMed  Google Scholar 

  50. Godo A, Blanco J, Vidal F, Sandalinas M, Garcia-Guixe E, Anton E. Altered segregation pattern and numerical chromosome abnormalities interrelate in spermatozoa from Robertsonian translocation carriers. Reprod BioMed Online. 2015;31(1):79–88. https://doi.org/10.1016/j.rbmo.2015.04.003.

    Article  PubMed  Google Scholar 

  51. Honda H, Miharu N, Ohashi Y, Honda N, Hara T, Ohama K. Analysis of segregation and aneuploidy in two reciprocal translocation carriers, t(3;9)(q26.2;q32) and t(3;9)(p25;q32), by triple-color fluorescence in situ hybridization. Hum Genet. 1999;105(5):428–36. https://doi.org/10.1007/s004390051126.

    Article  CAS  PubMed  Google Scholar 

  52. Pujol A, Durban M, Benet J, Boiso I, Calafell JM, Egozcue J, et al. Multiple aneuploidies in the oocytes of balanced translocation carriers: a preimplantation genetic diagnosis study using first polar body. Reproduction. 2003;126(6):701–11. https://doi.org/10.1530/rep.0.1260701.

    Article  CAS  PubMed  Google Scholar 

  53. Tulay P, Gultomruk M, Findikli N, Bahceci M. Number of embryos biopsied as a predictive indicator for the outcome of preimplantation genetic diagnosis by fluorescence in situ hybridisation in translocation cases. Zygote. 2016;24(1):107–14. https://doi.org/10.1017/S0967199414000793.

    Article  CAS  PubMed  Google Scholar 

  54. Munne S, Escudero T, Fischer J, Chen S, Hill J, Stelling JR, et al. Negligible interchromosomal effect in embryos of Robertsonian translocation carriers. Reprod BioMed Online. 2005;10(3):363–9. https://doi.org/10.1016/s1472-6483(10)61797-x.

    Article  PubMed  Google Scholar 

  55. Alfarawati S, Fragouli E, Colls P, Wells D. Embryos of robertsonian translocation carriers exhibit a mitotic interchromosomal effect that enhances genetic instability during early development. PLoS Genet. 2012;8(10):e1003025. https://doi.org/10.1371/journal.pgen.1003025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilet Kubra Boynukalin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report related with this manuscript.

Ethical approval

This study was approved by the Institutional Review Board with a reference number of 55.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boynukalin, F.K., Gultomruk, M., Turgut, N.E. et al. The impact of patient, embryo, and translocation characteristics on the ploidy status of young couples undergoing preimplantation genetic testing for structural rearrangements (PGT-SR) by next generation sequencing (NGS). J Assist Reprod Genet 38, 387–396 (2021). https://doi.org/10.1007/s10815-020-02054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-02054-4

Keywords

Navigation