Skip to main content
Log in

Recovery of Indium from Hard Zinc Slag by Pressure Leaching and Solvent Extraction

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, hydrometallurgical processes involving pressure acid leaching and solvent extraction were developed to aid recovery of indium from zinc slag, which is produced in the imperial smelting process. Four different acid leaching methods were studied, namely atmospheric leaching, atmospheric leaching with KMnO4, roasting-atmospheric leaching, and oxygen pressure leaching in a sulfuric acid medium. Oxygen pressure acid leaching is the most effective method for indium extraction, and 94.1% of indium was leached under the optimum conditions, i.e., 300 g/L H2SO4,oxygen pressure 0.4 MPa, liquid/solid ratio 10 mL/g, and temperature 100°C for 5 h. X-ray diffraction and scanning electron microscopy examination of the raw material and leaching residue samples indicated that the intermetallic compounds Cu5Zn8and Cu2Zn, metallic zinc, and iron in the raw material dissolved, leaving the insoluble components PbSO4 and Pb as the major compounds in the leaching residue. A 98.5% proportion of the indium in the leaching solution was selectively extracted with 30% bis(2-ethylhexyl) phosphate and 70% kerosene by three-stage counter-current extraction, and 99.5% of the indium in the loaded organic phase was stripped by 6 mol/L HCl through four-stage counter-current stripping. The overall recovery yield of indium through all processes was approximately 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.J. Cook, C.L. Ciobanuand, and T. Willuams, N.J. Cook, C.L. Ciobanuand, and T. Willuams, Hydrometallurgy 108, 226. (2011).

    Article  Google Scholar 

  2. S. Wegscheider, S. Steinlechner, and M. Leuchtenmuller, S. Wegscheider, S. Steinlechner, and M. Leuchtenmuller, JOM 69, 388. (2017).

    Article  Google Scholar 

  3. Y. Fan, Y. Liu, L. Niu, T. Jing, W. Zhang, and T. Zhang, Y. Fan, Y. Liu, L. Niu, T. Jing, W. Zhang, and T. Zhang, Hydrometallurgy 186, 192. (2019).

    Article  Google Scholar 

  4. J.W. Han, W. Li, W.Q. Qin, F. Jiao, D.W. Wang, and C. Liang, J.W. Han, W. Li, W.Q. Qin, F. Jiao, D.W. Wang, and C. Liang, JOM 68, 2543. (2016).

    Article  Google Scholar 

  5. F. Zhang, C. Wei, Z. Deng, X. Li, C. Li, and M. Li, F. Zhang, C. Wei, Z. Deng, X. Li, C. Li, and M. Li, Hydrometallurgy 161, 102. (2016).

    Article  Google Scholar 

  6. B. Nikov, P. Stojanov, and T. Stojadinovic, B. Nikov, P. Stojanov, and T. Stojadinovic, Hydrometallurgy 94, 1153. (1994).

    Article  Google Scholar 

  7. S. Li, Y. Liu, D. Zhai, and X. Zhou, S. Li, Y. Liu, D. Zhai, and X. Zhou, J. Kunming Inst. Technol. 19, 38. (in Chinese) (1994).

    Google Scholar 

  8. B. Yang, Y.N. Dai, and W. Luo, B. Yang, Y.N. Dai, and W. Luo, J. Kunming Univ. Sci. Technol. 23, 1. (in Chinese) (1998).

    Google Scholar 

  9. M. Hu, B. Peng, L.Y. Chai, Y.C. Li, N. Peng, and Y.Z. Yuan, M. Hu, B. Peng, L.Y. Chai, Y.C. Li, N. Peng, and Y.Z. Yuan, and D. Chen, JOM 67, 2005. (2015).

    Article  Google Scholar 

  10. X. Dai, M. Yang, K. Chen, P. Zeng, Y. Li, and M. Huang, X. Dai, M. Yang, K. Chen, P. Zeng, Y. Li, and M. Huang, Hydrometall. China 34, 394. (in Chinese) (2015).

    Google Scholar 

  11. Z. Lan, Z. Lan, Nonferrous Metals 5, 33. (in Chinese) (2003).

    Google Scholar 

  12. X. Li, and J. Yao, X. Li, and J. Yao, Metal Mine 3, 40. (in Chinese) (2007).

    Google Scholar 

  13. Y. Liang, C. Wei, P. Jiang, M. Li, C. Li, Z. Deng, and G. Wang, Y. Liang, C. Wei, P. Jiang, M. Li, C. Li, Z. Deng, and G. Wang, Nonferrous Metals 62, 69. (in Chinese) (2010).

    Google Scholar 

  14. Y. Li, V.G. Papangelakis, and I. Perederiy, Y. Li, V.G. Papangelakis, and I. Perederiy, Hydrometallurgy 97, 185. (2009).

    Article  Google Scholar 

  15. X. Li, Y. Zhang, Q. Qin, J. Yang, and Y. Wei, X. Li, Y. Zhang, Q. Qin, J. Yang, and Y. Wei, Trans. Nonferrous Met. Soc. China 20, s141. (2010).

    Article  Google Scholar 

  16. LangováŠárka, and Matýsek, D. Hydrometallurgy 101, 171 (2010)

  17. A. Muszer, J. Wódka, T. Chmielewski, and S. Matuska, A. Muszer, J. Wódka, T. Chmielewski, and S. Matuska, Hydrometallurgy 137, 1. (2013).

    Article  Google Scholar 

  18. ZhangH., Xu H., ZhangX., ZhangY. and Zhang, Y., Hydrometallurgy 142, 47 (2014).

  19. B. Voigt, and A. Göbler, B. Voigt, and A. Göbler, Cryst. Res. Rechnol. 21, 1177. (1986).

    Google Scholar 

  20. M.S. Lee, J.G. Ahn, and E.C. Lee, M.S. Lee, J.G. Ahn, and E.C. Lee, Hydrometallurgy 63, 269. (2002).

    Article  Google Scholar 

  21. X. Li, Z. Deng, C. Li, C. Wei, M. Li, G. Fan, and H. Rong, X. Li, Z. Deng, C. Li, C. Wei, M. Li, G. Fan, and H. Rong, Hydrometallurgy 156, 1. (2015).

    Article  Google Scholar 

  22. H.N. Kang, J.Y. Lee, and J.Y. Kim, H.N. Kang, J.Y. Lee, and J.Y. Kim, Hydrometallurgy 110, 120. (2011).

    Article  Google Scholar 

  23. D. Liu, B. Yang, Y. Dai, G. Du, W. Tang, and L. Han, D. Liu, B. Yang, Y. Dai, G. Du, W. Tang, and L. Han, Chin. J Rare Metals 29, 574. (in Chinese) (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant Nos. 51964029, 51664030, 51664029, and 51804146) and Yunnan Province Applied Foundation Research Programs, China (Nos. 2020FB081 and 202001AT070079). We thank Andrew Jackson, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbin Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Li, X., Wei, C. et al. Recovery of Indium from Hard Zinc Slag by Pressure Leaching and Solvent Extraction. JOM 73, 721–728 (2021). https://doi.org/10.1007/s11837-020-04519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04519-4

Navigation