Skip to main content
Log in

Peculiarities of Intermetallic Phase Formation in the Process of a Solid State Reaction in (Al/Cu)n Multilayer Thin Films

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 30 March 2021

This article has been updated

Abstract

Phase formation in a solid state reaction in Al/Cu bilayer and multilayer thin films was studied by the methods of in situ transmission electron microscopy, electron diffraction, simultaneous thermal analysis and x-ray diffraction. It was established that the phase formation sequences in the (Al/Cu)n (n = 2, 15) multilayer thin films (θ-Al2Cu → γ1-Al4Cu9 → η2-AlCu) and Al/Cu bilayer thin films (θ-Al2Cu → η2-AlCu → γ1-Al4Cu9) were different. It was assumed that the phase formation process in the thin films was strongly affected by a number of copper/aluminum interfaces due to the changes of aluminum and copper diffusion current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Y.N. Zhou, eds., Microjoining and Nanojoining (Cambridge: Woodhead, 2008).

    Google Scholar 

  2. D.J. Fisher, Bonding by Self-propagating Reaction (Millersville: Materials Research Forum LLC, 2019).

    Book  Google Scholar 

  3. A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, and A.S. Mukasyan, Combust. Flame 166, 158 (2016). https://doi.org/10.1016/j.combustflame.2016.01.014.

    Article  Google Scholar 

  4. A.S. Mukasyan, A.S. Rogachev, and S.T. Aruna, Adv. Powder Technol. 26, 954 (2015). https://doi.org/10.1016/j.apt.2015.03.013.

    Article  Google Scholar 

  5. A.I. Oliva, J.E. Corona, and V. Sosa, Mater. Charact. 61, 696 (2010). https://doi.org/10.1016/j.matchar.2010.03.016.

    Article  Google Scholar 

  6. M.R.S. Dias, C. Gong, Z.A. Benson, and M.S. Leite, Adv. Opt. Mater. 6, 1700830 (2018). https://doi.org/10.1002/adom.201700830.

    Article  Google Scholar 

  7. Q.-z. Zhang, W.-b. Gong, and W. Liu, Trans. Nonferrous Met. Soc. China 25, 1779 (2015). https://doi.org/10.1016/S1003-6326(15)63783-9.

    Article  Google Scholar 

  8. W.-B. Lee, K.-S. Bang, and S.-B. Jung, J. Alloys Compd. 390, 212 (2005). https://doi.org/10.1016/j.jallcom.2004.07.057.

    Article  Google Scholar 

  9. A. Zykova, A. Chumaevskii, A. Gusarova, T. Kalashnikova, S. Fortuna, N. Savchenko, E. Kolubaev, and S. Tarasov, Metals 10, 818 (2020). https://doi.org/10.3390/met10060818.

    Article  Google Scholar 

  10. H. Xu, I. Qin, H. Clauberg, B. Chylak, and V.L. Acoff, Scr. Mater. 115, 1 (2016). https://doi.org/10.1016/j.scriptamat.2015.12.025.

    Article  Google Scholar 

  11. H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, and Z. Chen, Scr. Mater. 61, 165 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.034.

    Article  Google Scholar 

  12. D. Chu, J.-Y. Zhang, J.-J. Yao, Y.-Q. Han, and C.-J. Wu, Trans. Nonferr. Metal. Soc. China 27, 2521 (2017). https://doi.org/10.1016/S1003-6326(17)60279-6.

    Article  Google Scholar 

  13. T.T. Sasaki, R.A. Morris, G.B. Thompson, Y. Syarif, and D. Fox, Scr. Mater. 63, 488 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.010.

    Article  Google Scholar 

  14. A. Gueydan, B. Domengès, and E. Hug, Intermetallics 50, 34 (2014). https://doi.org/10.1016/j.intermet.2014.02.007.

    Article  Google Scholar 

  15. J. Li, L. Liu, L. Deng, B. Ma, F. Wang, L. Han, and I.E.E.E. Electr, Device Lett. 32, 1433 (2011). https://doi.org/10.1109/LED.2011.2161749.

    Article  Google Scholar 

  16. D. Zuo, S. Hu, J. Shen, and Z. Xue, Mater. Des. 58, 357 (2014). https://doi.org/10.1016/j.matdes.2014.02.004.

    Article  Google Scholar 

  17. J. Zhang, B.-H. Wang, G.-H. Chen, R.-M. Wang, C.-H. Miao, Z.-X. Zheng, and W.-M. Tang, Trans. Nonferr. Metal. Soc. China 26, 3283 (2016). https://doi.org/10.1016/S1003-6326(16)64462-X.

    Article  Google Scholar 

  18. O. Mokhtari and H. Nishikawa, Microelectr. Reliab. 113, 113942 (2020). https://doi.org/10.1016/j.microrel.2020.113942.

    Article  Google Scholar 

  19. J.L. Murray, Int. Metal. Rev. 30, 211 (1985). https://doi.org/10.1179/imtr.1985.30.1.211.

    Article  Google Scholar 

  20. R. Pretorius, A.M. Vredenberg, F.W. Saris, and R. de Reus, J. Appl. Phys. 70, 3636 (1991). https://doi.org/10.1063/1.349211.

    Article  Google Scholar 

  21. R. Pretoriuos, C. Theron, A. Vantomme, and J.W. Mayer, Crit. Rev. Solid State Mater. Sci. 24, 1 (1999). https://doi.org/10.1080/10408439991329161.

    Article  Google Scholar 

  22. E.T. Moiseenko, R.R. Altunin, and S.M. Zharkov, Metall. Mater. Trans. A 51, 1428 (2020). https://doi.org/10.1007/s11661-019-05602-5.

    Article  Google Scholar 

  23. D.L. Zhang and D.Y. Ying, Mater. Sci. Eng., A 301, 90 (2001). https://doi.org/10.1016/S0921-5093(00)01388-5.

    Article  Google Scholar 

  24. H.G. Jiang, J.Y. Dai, H.Y. Tong, B.Z. Ding, Q.H. Song, and Z.Q. Hu, J. Appl. Phys. 74, 6165 (1993). https://doi.org/10.1063/1.355183.

    Article  Google Scholar 

  25. H.T.G. Hentzell and K.N. Tu, J. Appl. Phys. 54, 6929 (1983). https://doi.org/10.1063/1.332000.

    Article  Google Scholar 

  26. H.T.G. Hentzell, R.D. Thompson, and K.N. Tu, Mater. Lett. 2, 81 (1983). https://doi.org/10.1016/0167-577X(83)90041-1.

    Article  Google Scholar 

  27. Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao, J. Mater. Sci. 46, 2467 (2011). https://doi.org/10.1007/s10853-010-5093-0.

    Article  Google Scholar 

  28. F. Haidara, M.-C. Record, B. Duployer, and D. Mangelinck, Surf. Coat. Technol. 206, 3851 (2012). https://doi.org/10.1016/j.surfcoat.2012.01.065.

    Article  Google Scholar 

  29. D.P. Adams, M.A. Rodriguez, C.P. Tigges, and P.G. Kotula, J. Mater. Res. 21, 3168 (2006). https://doi.org/10.1557/JMR.2006.0387.

    Article  Google Scholar 

  30. R.R. Altunin, E.T. Moiseenko, and S.M. Zharkov, Phys. Solid State 62, 621 (2020). https://doi.org/10.1134/S1063783420040034.

    Article  Google Scholar 

  31. R.R. Altunin, E.T. Moiseenko, and S.M. Zharkov, Phys. Solid State 60, 1413 (2018). https://doi.org/10.1134/S106378341807003X.

    Article  Google Scholar 

  32. R.R. Altunin, E.T. Moiseenko, and S.M. Zharkov, Phys. Solid State 62, 200 (2020). https://doi.org/10.1134/S1063783420010059.

    Article  Google Scholar 

  33. S.M. Zharkov, E.T. Moiseenko, and R.R. Altunin, J. Solid State Chem. 269, 36 (2019). https://doi.org/10.1016/j.jssc.2018.09.009.

    Article  Google Scholar 

  34. S.M. Zharkov, E.T. Moiseenko, R.R. Altunin, N.S. Nikolaeva, V.S. Zhigalov, and V.G. Myagkov, JETP Lett. 99, 405 (2014). https://doi.org/10.1134/S0021364014070145.

    Article  Google Scholar 

  35. E.T. Moiseenko, R.R. Altunin, and S.M. Zharkov, Phys. Solid State 59, 1233 (2017). https://doi.org/10.1134/S1063783417060154.

    Article  Google Scholar 

  36. S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, G.M. Zeer, S.N. Varnakov, and S.G. Ovchinnikov, Solid State Phenom. 215, 144 (2014). https://doi.org/10.4028/www.scientific.net/SSP.215.144.

    Article  Google Scholar 

  37. V.G. Myagkov, L.E. Bykova, O.A. Bayukov, V.S. Zhigalov, I.A. Tambasov, S.M. Zharkov, A.A. Matsynin, and G.N. Bondarenko, J. Alloys Compd. 636, 223 (2015). https://doi.org/10.1016/j.jallcom.2015.02.012.

    Article  Google Scholar 

  38. V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, S.M. Zharkov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, and G.N. Bondarenko, J. Alloys Compd. 665, 197 (2016). https://doi.org/10.1016/j.jallcom.2015.12.257.

    Article  Google Scholar 

  39. L.E. Bykova, S.M. Zharkov, V.G. Myagkov, V.S. Zhigalov, and G.S. Patrin, JOM 72, 2139 (2020). https://doi.org/10.1007/s11837-019-03919-5.

    Article  Google Scholar 

  40. Powder Diffraction File (PDF 4 + , 2020), Inorganic Phases Database, International Center for Diffraction Data (ICDD) (Swarthmore, PA, USA). https://www.icdd.com/pdf-4/.

  41. N. Kuwano, T. Doi, and T. Eguchi, Trans. Jpn. Inst. Met. 18, 807 (1977). https://doi.org/10.2320/matertrans1960.18.807.

    Article  Google Scholar 

  42. C.D. Yang, W. Li, and W. Zhi, Solid State Commun. 151, 1270 (2011). https://doi.org/10.1016/j.ssc.2011.05.040.

    Article  Google Scholar 

  43. F. Hodaj and A.M. Gusak, Acta Mater. 52, 4305 (2004). https://doi.org/10.1016/j.actamat.2004.05.047.

    Article  Google Scholar 

  44. H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, and V.L. Acoff, Acta Mater. 59, 5661 (2011). https://doi.org/10.1016/j.actamat.2011.05.041.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation under Grant #18-13-00080. The electron microscopy investigations were conducted in the SFU Joint Scientific Center whose infrastructure was supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation. The preparation of cross-section samples for TEM investigations was conducted in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey M. Zharkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, E.T., Zharkov, S.M., Altunin, R.R. et al. Peculiarities of Intermetallic Phase Formation in the Process of a Solid State Reaction in (Al/Cu)n Multilayer Thin Films. JOM 73, 580–588 (2021). https://doi.org/10.1007/s11837-020-04522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04522-9

Navigation