Skip to main content
Log in

Morphing of Plane Element to Beam Element for Static, Buckling, and Free Vibration Analysis

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Static and dynamic analysis of beams is widely used in engineering problems. In this paper, morphing of plane element to beam element will be used for static, buckling, and free vibration analysis. The formulation of the proposed plane element begins with the writing of Taylor's expansion of the strain field. Selecting a complete first-order polynomial for strain field will eliminate some common errors such as parasitic shear error and sensitivity to distortion and rotation of the coordinate axes. Furthermore, establishing equilibrium equations of the plane problem reveals dependencies between the strain states. These dependencies, in addition to reducing the number of unknowns, will improve the efficiency of proposed element. By calculating the conversion matrix, the proposed beam element is created based on the suggested plane element. This matrix helps to calculate the stiffness, mass, and geometric stiffness matrices of the proposed beam element. Several benchmark tests will use to demonstrate the efficiency of the new element. For comparison, results of other researchers’ good plane and beam elements will be available. In these numerical tests, the good accuracy of the proposed element in static, buckling, and free vibration analysis of beams with different boundary conditions and different aspect ratios will be proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akavci SS (2007) Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation. J Reinf Plast Compos 26:1907–1919. https://doi.org/10.1177/0731684407081766

    Article  Google Scholar 

  • Bazant Z, Cedolin L (1991) Stability of structures. Oxford University Press, USA

    MATH  Google Scholar 

  • Bickford WB (1982) A consistent higher order beam theory. Dev Theor Appl Mech 11:137–150

    Google Scholar 

  • Eisenberger M (2003a) Dynamic stiffness vibration analysis using a high-order beam model. Int J Numer Meth Eng 57:1603–1614

    Article  Google Scholar 

  • Eisenberger M (2003b) An exact high order beam element. Comput struct 81:147–152

    Article  Google Scholar 

  • Esen I (2019) Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int J Mech Sci 153:21–35

    Article  Google Scholar 

  • Ghugal YM (2010) Flexure and vibration of thick beams using trigonometric shear deformation theory. J Exp Appl Mech 1:1–27

    Google Scholar 

  • Heyliger PR, Reddy JN (1988) A higher order beam finite element for bending and vibration problems. J Sound Vib 126:309–326. https://doi.org/10.1016/0022-460X(88)90244-1

    Article  MATH  Google Scholar 

  • Kahya V, Turan M (2017) Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Compos B Eng 109:108–115

    Article  Google Scholar 

  • Lee J, Schultz W (2004) Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. J Sound Vib 269:609–621

    Article  Google Scholar 

  • Lee SJ, Park KS (2013) Vibrations of Timoshenko beams with isogeometric approach. Appl Math Model 37:9174–9190

    Article  MathSciNet  Google Scholar 

  • Li J, Hua H (2010) The effects of shear deformation on the free vibration of elastic beams with general boundary conditions proceedings of the institution of mechanical engineers, Part C. J Mech Eng Sci 224:71–84

    Article  Google Scholar 

  • Li S-R, Batra RC (2013) Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams. Compos Struct 95:5–9

    Article  Google Scholar 

  • Li X-F (2008) A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. J Sound vib 318:1210–1229

    Article  Google Scholar 

  • Li X-F, Yu Z-W, Zhang H (2011) Free vibration of shear beams with finite rotational inertia. J Constr Steel Res 67:1677–1683

    Article  Google Scholar 

  • Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J Sound vib 246:29–46

    Article  Google Scholar 

  • Malekzadeh P, Karami G (2008) A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Appl Math Model 32:1381–1394

    Article  Google Scholar 

  • Nguyen DK, Gan BS, Le TH (2013) Dynamic response of non-uniform functionally graded beams subjected to a variable speed moving load. J Comput Sci Technol 7:12–27

    Article  Google Scholar 

  • Nguyen T-K, Vo TP, Thai H-T (2013) Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Compos B Eng 55:147–157

    Article  Google Scholar 

  • Petrolito J (1995) Stiffness analysis of beams using a higher-order theory. Comput struct 55:33–39

    Article  Google Scholar 

  • Ribeiro P (2004) Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput struct 82:1413–1423

    Article  Google Scholar 

  • Sayyad A (2011) Comparison of various refined beam theories for the bending and free vibration analysis of thick beams. Appl Comput Mecha 5:217–230

    Google Scholar 

  • Sayyad A (2012) Static flexure and free vibration analysis of thick isotropic beams using different higher order shear deformation theories. Int J Appl Math Mech 8:71–87

    Google Scholar 

  • Şi̇mşek M, Kocatürk T, (2007) Free vibration analysis of beams by using a third-order shear deformation theory. Sadhana 32:167–179

    Article  Google Scholar 

  • Sina S, Navazi H, Haddadpour H (2009) An analytical method for free vibration analysis of functionally graded beams. Mater Des 30:741–747

    Article  Google Scholar 

  • Vo TP, Thai H-T, Nguyen T-K, Inam F, Lee J (2015) A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos Struct 119:1–12

    Article  Google Scholar 

  • Vo TP, Thai H-T, Nguyen T-K, Maheri A, Lee J (2014) Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng Struct 64:12–22

    Article  Google Scholar 

  • Yuan S, Ye K, Xiao C, Williams FW, Kennedy D (2007) Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli-Euler column buckling. J Sound Vib 303:526–537

    Article  Google Scholar 

  • Żak A, Krawczuk M, Palacz M, Waszkowiak W (2017) High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the time-domain spectral finite element method. J Sound Vib 409:318–335

    Article  Google Scholar 

  • Zhang B, Rajendran S (2008) ‘FE-Meshfree’QUAD4 element for free-vibration analysis. Compu methods appl mech eng 197:3595–3604. https://doi.org/10.1016/j.cma.2008.02.012

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work has been financially supported by the research deputy of education and research university of Torbat Heydarieh, The Grant Number is 64.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Yaghoobi.

Appendix

Appendix

$$\hat{G}_{q} = \left[ {\begin{array}{*{20}c} 1 & 0 & {\frac{1}{2}h} & { - \frac{1}{2}l} & 0 & { - \frac{1}{4}h} & {\frac{1}{8}l^{2} - \frac{1}{4}h^{2} \left( {1 + \frac{\lambda }{2G}} \right)} & {\frac{1}{4}h^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{4}lh} & 0 \\ 0 & 1 & { - \frac{1}{2}l} & 0 & { - \frac{1}{2}h} & { - \frac{1}{4}l} & 0 & {\frac{1}{4}lh} & {\frac{1}{4}l^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{8}h^{2} - \frac{1}{4}l^{2} \left( {1 + \frac{\lambda }{2G}} \right)} \\ 1 & 0 & {\frac{1}{2}h} & {\frac{1}{2}l} & 0 & { - \frac{1}{4}h} & {\frac{1}{8}l^{2} - \frac{1}{4}h^{2} \left( {1 + \frac{\lambda }{2G}} \right)} & {\frac{1}{4}h^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & { - \frac{1}{4}lh} & 0 \\ 0 & 1 & {\frac{1}{2}l} & 0 & { - \frac{1}{2}h} & {\frac{1}{4}l} & 0 & { - \frac{1}{4}lh} & {\frac{1}{4}l^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{8}h^{2} - \frac{1}{4}l^{2} \left( {1 + \frac{\lambda }{2G}} \right)} \\ 1 & 0 & { - \frac{1}{2}h} & {\frac{1}{2}l} & 0 & {\frac{1}{4}h} & {\frac{1}{8}l^{2} - \frac{1}{4}h^{2} \left( {1 + \frac{\lambda }{2G}} \right)} & {\frac{1}{4}h^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{4}lh} & 0 \\ 0 & 1 & {\frac{1}{2}l} & 0 & {\frac{1}{2}h} & {\frac{1}{4}l} & 0 & {\frac{1}{4}lh} & {\frac{1}{4}l^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{8}h^{2} - \frac{1}{4}l^{2} \left( {1 + \frac{\lambda }{2G}} \right)} \\ 1 & 0 & { - \frac{1}{2}h} & { - \frac{1}{2}l} & 0 & {\frac{1}{4}h} & {\frac{1}{8}l^{2} - \frac{1}{4}h^{2} \left( {1 + \frac{\lambda }{2G}} \right)} & {\frac{1}{4}h^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & { - \frac{1}{4}lh} & 0 \\ 0 & 1 & { - \frac{1}{2}l} & 0 & {\frac{1}{2}h} & { - \frac{1}{4}l} & 0 & { - \frac{1}{4}lh} & {\frac{1}{4}l^{2} \left( { - \frac{1}{2} - \frac{\lambda }{2G}} \right)} & {\frac{1}{8}h^{2} - \frac{1}{4}l^{2} \left( {1 + \frac{\lambda }{2G}} \right)} \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]$$
(A1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobi, M., Sedaghatjo, M. & Alizadeh, R. Morphing of Plane Element to Beam Element for Static, Buckling, and Free Vibration Analysis. Iran J Sci Technol Trans Civ Eng 45, 2425–2435 (2021). https://doi.org/10.1007/s40996-020-00537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-020-00537-z

Keywords

Navigation