Skip to main content

Advertisement

Log in

Evaluation of the Cooling Potential of Earth Air Heat Exchanger Using Concrete Pipes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An earth air heat exchanger (EAHE) has advantages of its simplicity, easy implementation and low operating cost. The EAHE system is found less expensive for cooling and heating of buildings in severe climates. In this research paper, efforts have been made to analyze the accomplishment of a low-cost cooling system of outdoor air for the hot-dry & hot-humid climate. The effect of velocity, length and depth on the cooling potential of the system is studied at the inlet and outlet of the pipe. The novelty of this research is that enormous enhancement of the cooling potential has been observed in hot-humid climate than hot-dry climate, which is not available in previous studies. The results show that the maximum cooling potential in hot-dry climate is found 5643 kWh, 7375 kWh, 8939 kWh for the EAHE length of 15 m, 30 m and 45 m, respectively, corresponding to the velocity 2.5 m s−1 and depth 1.5 m. Whereas in a hot-humid climate, maximum cooling potential is achieved 13,373 kWh, 20,134 kWh and 24,080 kWh with a length of 15 m, 30 m and 45 m, respectively, for the given velocity and depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CFCs:

Chlorofluorocarbons

DBT:

Dry-bulb temperature

DPT:

Dew point temperature

EAHE:

Earth air heat exchanger

GI:

Galvanized iron

HCFCs:

Hydrochlorofluorocarbons

MS:

Mild steel

PVC:

Polyvinyl chloride

RTDs:

Resistance temperature detectors

WBT:

Wet-bulb temperature

C p :

Specific heat at constant pressure (kJ kg−1·K)

D :

Depth of pipe (m)

dw:

Specific humidity (kg kg−1 of dry air)

h fg :

Latent heat of vaporization (J kg−1)

L :

Length of pipe (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Q :

Heat transfer (kW)

Q c :

Cooling potential (kWh)

T d :

The temperature difference between inlet and outlet (°C)

T in :

Inlet temperature of air (°C)

T out :

Outlet temperature of air (°C)

v :

Velocity of air (m s−1)

References

  1. B. Singh, R. Kumar, A.K. Asati, J. Mech. Sci. Technol. 32, 5457–5463 (2018)

    Article  Google Scholar 

  2. N. Bhargava, S. Gupta, J. Indian Manage. 11, 1–20 (2007)

    Google Scholar 

  3. N.B. Devaraj, M.S. Reddy, Int. J. Eng. Res. 3, 1237–1240 (2016)

    Google Scholar 

  4. H. Esen, M. Inalli, M. Esen, Build Environ. 42, 1955–1965 (2007)

    Article  Google Scholar 

  5. H. Esen, M. Esen, O. Ozsolak, J. Exp. Theor. Artif Intell. 1, 1–17 (2017)

    Article  Google Scholar 

  6. T.S. Bisnoiya, Geotherm. Energy. 18, 1–10 (2014)

    Google Scholar 

  7. J. Du, P. Bansal, B. Huang, Appl. Energy. 93, 268–276 (2012)

    Article  Google Scholar 

  8. A.N.Z. Sanusi, L. Shao, N. Ibrahim, Renewable Energy 49, 193–196 (2013)

    Article  Google Scholar 

  9. V.K. Tyagi, J. Mater. Sci. Mech. Eng. 2, 40–44 (2015)

    Google Scholar 

  10. M. Bojic, G. Papadakis, S. Kyritsis, Energy. 24, 519–523 (1999)

    Article  Google Scholar 

  11. N. Hasan, Y.B. Mathur, M.A. Khader, IOSR J. Eng. 8, 20–25 (2018)

    Google Scholar 

  12. G. Sharan, R. Jadhav, IIMA Working Pap. 1–15 (2003)

  13. C. George, J. Kimball, Ann. Arid Zone. 49, 285–301 (2010)

    Google Scholar 

  14. P. Hollmuller, B. Lachal, Appl. Energy. 119, 476–487 (2014)

    Article  Google Scholar 

  15. J. Kaur, P. Singh, H. Kaur, Environ. Sustain.- Concepts, Principles, Evidences and Innovations. 116-120 (2015).

  16. F. Niu, Y. Yu, D. Yu, H. Li, Appl. Energy. 137, 211–221 (2015)

    Article  Google Scholar 

  17. R. Rathee, A. Lanjewar, Int. J. Recent Res. Aspects. 2, 189–192 (2015)

    Google Scholar 

  18. R. Kumar, S. Ramesh, S.C. Kaushik, Build Environ. 38, 807–813 (2003)

    Article  Google Scholar 

  19. C.P. Jacovides, G. Mihalakakou, Renewable Energy 6, 893–900 (1995)

    Article  Google Scholar 

  20. V. Bansal, R. Misra, G.D. Agrawal, J. Mathur, Energy Build. 42, 645–648 (2010)

    Article  Google Scholar 

  21. R.R. Manjul, V. Bartaria, Int. J. Eng. Tre. Technol. 35, 387–390 (2016)

    Article  Google Scholar 

  22. Z. Misri, M.H.W. Ibrahim, A.S.M.A. Awal, M.S.M. Desa, N.S. Ghadzali, I.O.P. Conf, Series: Earth Environ. Sci. Trans. 140, 1–7 (2018)

    Google Scholar 

  23. N. Sakhri, Y. Menni, H. Ameur, Case Stud Chem Environ Eng. 1–15, (2020)

  24. J. Vaz, M.A. Sattler, D.S. Ruth-Brum, D. Elizaldo, D. Santos, L.A. Isoldi, Escola. Energy Build. 72, 122–131 (2014)

    Article  Google Scholar 

  25. F. Ascione, L. Bellia, Renewable Energy 36, 2177–2188 (2011)

    Article  Google Scholar 

  26. A. Shukla, G.N. Tiwari, M.S. Sodha, Int. J. Agric. Eng. 10, 1–14 (2008)

    Google Scholar 

  27. T. Woodson, Y. Coulibaly, E.S. Traore, J. Constr. Dev. Countries. 17, 21–32 (2012)

    Google Scholar 

  28. G.N. Tiwari, V. Singh, P. Joshi P, D.A. Shyam, Prabhakant, A. Gupta, Open Environ. Sci. 8, 24–34 (2014)

  29. T.S. Bisnoiya, A. Kumar, B. Prashant, Energy Build. 86, 214–221 (2015)

    Article  Google Scholar 

  30. N. Sogale, S. Thombare, I. Lopes, A. Nair, Int. J. Eng. Sci. Comput. 7, 5039–5042 (2017)

    Google Scholar 

  31. T.S. Bisnoiya, Geotherm. Energy. 3, 18 (2015)

    Article  Google Scholar 

  32. G. Gan, Energy Build. 85, 12–22 (2014)

    Article  Google Scholar 

  33. R.D.S. Brum, J. Vaz, L.A.O. Rocha, E.D.D. Santos, L.A. Isoldi, Energy Build. 64, 395–402 (2013)

    Article  Google Scholar 

  34. A. Chel, G.N. Tiwari, Energy Convers. Manage. 51, 393–409 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The investigations of earth air heat exchanger may not be fulfilled with the kind help of Professor Rakesh Kumar, Head of Mechanical Engineering Department, Mahatma Gandhi Government Engineering College Kotla (Jeori), Rampur, Himachal Pradesh, India. I also thank Dr. Arun Kumar Asati, Professor at Shaheed Bhagat Singh State Technical Campus, Ferozepur who helped me a lot at every step of my research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Asati, A.K. & Kumar, R. Evaluation of the Cooling Potential of Earth Air Heat Exchanger Using Concrete Pipes. Int J Thermophys 42, 19 (2021). https://doi.org/10.1007/s10765-020-02774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02774-w

Keywords

Navigation