Skip to main content
Log in

Spin and Charge Correlations Effect on Quantum Entanglement for Extended Hubbard Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The presence of long-range spin and charge correlations underlies a variety of physical phenomena in condensed-matter systems, especially, in qubits systems. This work aims to study quantum entanglement versus spin and charge correlations in qubits systems modeled by 1D Extended Hubbard Model. The considered model is parameterized by on-site coulomb interaction energy U, off-site coulomb interaction energy V and exchange spin-spin interaction γJ, where γ is the anisotropy parameter. In charge space, the quantum entanglement reaches its maximum value for an optimal interatomic distance that checks the condition U = 2V. Moreover, in spin phase the quantum entanglement increases with external magnetic field h, especially, for anisotropic Ising model with γ = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kent, R.B., Munro, W., Spiller, T.: US patent US20067075438 (2006)

  2. Lau, H.-K., Lo, H.-K.: Insecurity of position-based quantum-cryptography protocols against entanglement attacks. Phys. Rev. A. 83, 012322 (2011)

    Article  ADS  Google Scholar 

  3. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Nat. Photonics. 4, 10 (2010)

    Article  Google Scholar 

  4. Feo, L.D., Jao, D., Plût, J.: J. Math. Cryptol. 83, 209 (2014)

    Google Scholar 

  5. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  6. Furusawa, A., Srensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional Quantum Teleportation. Science. 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  7. Raussendorf, R., Briegel, H.J.: A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  8. Harir, S., Bennai, M., Boughaleb, Y.: Ground state of the 2d extended Hubbard model with more than nearest-neighbor interactions. Int. J. Mod. Phys. B. 26, 1250156 (2012)

    Article  ADS  Google Scholar 

  9. Harir, S., Zouhair, A., Bennai, M., Boughaleb, Y.: Charge and magnetic properties of 2D extended Hubbard model. Mol. Cryst. Liq. Cryst. 628, 162–166 (2016)

    Article  Google Scholar 

  10. Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009)

    Article  Google Scholar 

  11. Alicea, J.: New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  12. Albrecht, S.M., Higginbotham, A.P., Madsen, M., Kuemmeth, F., Jespersen, T.S., Nygard, J., Krogstrup, P., Marcus, C.M.: Exponential protection of zero modes in Majorana islands. Nature (London). 531, 206–209 (2016)

    Article  ADS  Google Scholar 

  13. Sau, J.D., Lutchyn, R.M., Tewari, S., Das Sarma, S.: Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  14. Alicea, J., Oreg, Y., Refael, G., von Oppen, F., Fisher, M.P.A.: Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011)

    Article  Google Scholar 

  15. Kraus, C.V., Zoller, P., Baranov, M.A.: Braiding of Atomic Majorana Fermions in Wire Networks and Implementation of the Deutsch-Jozsa Algorithm. Phys. Rev. Lett. 111, 203001 (2013)

    Article  ADS  Google Scholar 

  16. Mong, R.S.K., Clarke, D.J., Alicea, J., Lindner, N.H., Fendley, P., Nayak, C., Oreg, Y., Stern, A., Berg, E., Shtengel, K., Fisher, M.P.A.: Phys. Rev. X. 4, 011036 (2014)

    Google Scholar 

  17. Larsson, D., Johannesson, H.: Entanglement Scaling in the One-Dimensional Hubbard Model at Criticality. Phys. Rev. Lett. 95, 196406 (2005)

    Article  ADS  Google Scholar 

  18. Harir, S., Zouhair, A., Bennai, M., Boughaleb, Y.: J. Adv. Phys. 7, 1 (2018)

    Article  Google Scholar 

  19. Harir, S., Zouhair, A., Boulahia, Z., Kazaz, M., Boughaleb, Y.: Int. J. Theo. Phys. 52, 9 (2019)

    Google Scholar 

  20. Chen, Y.C., Moreo, A., Ortolani, F., Dagotto, E., Lee, T.K.: Phys. Rev. B. 50, 655(R) (1994)

    Article  ADS  Google Scholar 

  21. Haldane, F.D.M.: 'Luttinger liquid theory' of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 14, 2585–2609 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harir, S., Kazaz, M., Zouhair, A. et al. Spin and Charge Correlations Effect on Quantum Entanglement for Extended Hubbard Model. Int J Theor Phys 60, 185–194 (2021). https://doi.org/10.1007/s10773-020-04674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04674-z

Keywords

Navigation