Skip to main content
Log in

Numerical investigation of boundary layer flow past a thin heated needle immersed in hybrid nanofluid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The heat transfer in flow past thin needle has applications in instruments like hot wire anemometers. The objective of this article is to study the influence of hybrid nanoparticles on heat transfer distribution of the boundary layer flow over a parabolically shaped thin hot needle. The Sakiadis and Blasius 2-D flow scenarios have been analyzed by implementing a mathematical model with the Navier–Stokes and the energy equations. The resulting equations are solved numerically by using a similarity solution technique. This technique results in a differential equation in terms of a single variable, representing the curves parallel to the needle surface. The results show that using distinct nanoparticles allows us to control the heat transfer rate apart from the physical parameters, such as, needle size or velocity ratio parameter. A comparative analysis of Nusselt number, frictional drag, temperature, and velocity profiles for Ag–water nanofluid, Ag–CuO/water hybrid nanofluid, and CuO–water nanofluid has been carried out for different flow conditions, including Sakiadis and Blasius flow. The addition of nanoparticles hikes the heat transfer rate by 27–28% in Blasius flow and 6–8% in Sakiadis flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( T_{w} \) :

Temperature at the needle surface (K)

\( u_{w} \) :

Needle velocity (m s−1)

\( T_{\infty } \) :

Temperature of the ambient fluid (K)

\( u_{\infty } \) :

Velocity of the ambient fluid (m s−1)

\( \kappa \) :

Thermal conductivity (W m−1 K−1)

\( \mu \) :

Dynamic viscosity (kg m−1 s−1)

\( \nu \) :

Kinematic viscosity (m2 s−1)

\( \rho \) :

Density (kg m−3)

Pr:

Prandtl number \( \left( { = \frac{{\mu \left( {c_{p} } \right)_{\text{f}} }}{\kappa }} \right) \)

\( c \) :

Needle size

\( \eta \) :

Non-dimensional space variable

\( \theta \) :

Non-dimensional temperature

\( \phi_{1} \) :

Volume fraction of copper oxide nanoparticles

\( \phi_{2} \) :

Volume fraction of silver nanoparticles

\( \lambda \) :

Flow parameter

u,v :

Velocities in x and r direction, respectively (m s−1)

\( \infty \) :

For Ambient fluid

\( w \) :

For needle surface

hnf:

For hybrid nanofluid

nf:

For nanofluid

f:

For base fluid

\( s1 \) :

For copper oxide nanoparticles

\( s2 \) :

For silver nanoparticles

References

  1. R M Mark, Laminar boundary layers on slender bodies of revolution in axial flow, (Doctoral dissertation, California Institute of Technology) (1954)

  2. L L Lee Phys. Fluids 10 820 (1967)

    Article  ADS  Google Scholar 

  3. J L S Chen and T N Smith J. Heat Transf. 100 358 (1978)

    Article  Google Scholar 

  4. J P Narain and M S Uberoi J. Heat Transf. 94 240 (1972)

    Article  Google Scholar 

  5. T Grosan and I Pop J. Heat Transf. 133(5) 054503 (2011)

    Article  Google Scholar 

  6. J P Narain and M S Uberoi Phys. Fluids 15 1879 (1972)

    Article  ADS  Google Scholar 

  7. J P Narain and M S Uberoi Int. J. Heat Mass Transf. 16 1505 (1973)

    Article  Google Scholar 

  8. S U Choi and J A Eastman Argonne National Lab, IL (United States) (No. ANL/MSD/CP-84938; CONF-951135-29) (1995)

  9. J A Eastman Argonne National Lab., IL (US) (No. ANL/MSD/CP-96711) (1999)

  10. J A Eastman, S U S Choi, S Li, W Yu and L J Thompson Appl. Phys. Lett. 78 718 (2001)

    Article  ADS  Google Scholar 

  11. S U S Choi, Z G Zhang, W Yu, F E Lockwood and E A Grulke Appl. Phys. Lett. 79 2252 (2001)

    Article  ADS  Google Scholar 

  12. L Godson, K Deepak, C Enoch, B Jefferson and B Raja Arch. Civ. Mech. Eng. 14 489 (2014)

    Article  Google Scholar 

  13. M I Hasan Appl. Therm. Eng. 63 598 (2014)

    Article  Google Scholar 

  14. M Sheikholeslami and D D Ganji J. Taiwan Inst. Chem. Eng. 65 43 (2016)

    Article  Google Scholar 

  15. S K Das, S U Choi and H E Patel Heat Transf. Eng. 27 3 (2006)

    Article  ADS  Google Scholar 

  16. R Ahmad, M Mustafa and S Hina Chin. J. Phys. 55 1264 (2017)

    Article  Google Scholar 

  17. S K Soid, A Ishak and I Pop Appl. Therm. Eng. 114 58 (2017)

    Article  Google Scholar 

  18. M W A Khan, M I Khan, T Hayat and A Alsaedi Physica B Condens. Matter 534 113 (2018)

    Article  ADS  Google Scholar 

  19. A Hamid, A Hafeez, M Khan, A S Alshomrani and M Alghamdi Eur. J. Mech. B Fluids 76 434 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. F Mebarek-Oudina and R Bessaïh Thermophys. Aeromech. 26(3) 325 (2019)

    Article  ADS  Google Scholar 

  21. F Mebarek‐Oudina Heat Transf. Asian Res. 48(1) 135–147 (2019)

    Article  Google Scholar 

  22. S Marzougui, F Mebarek-Oudina, A Assia, M Magherbi, Z Shah and K Ramesh J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09662-3

    Article  Google Scholar 

  23. F Mebarek-Oudina Eng. Sci. Technol. Int. J. 20(4) 1324 (2017)

    Google Scholar 

  24. J Raza, F Mebarek-Oudina and A J Chamkha Multidiscip. Model. Mater. Struct. 15(4) 737 (2019). https://doi.org/10.1108/MMMS-07-2018-0133

    Article  Google Scholar 

  25. M A Sheremet, R Trimbitas, T Grosan and I Pop Appl. Math. Mech. 39 1425 (2018)

    Article  Google Scholar 

  26. B Souayeh, M G Reddy, P Sreenivasulu, T Poornima, M Rahimi-Gorji and I M Alarifi, J. Mol. Liq. 284 163 (2019)

    Article  Google Scholar 

  27. J Raza, F Mebarek-Oudina, P Ram and S Sharma Defect Diffus. Forum 401 92 (2020)

    Article  Google Scholar 

  28. J Raza, M Farooq, F Mebarek-Oudina and B Mahanthesh Multidiscip. Model. Mater. Struct. 15 913 (2019)

    Article  Google Scholar 

  29. S M Kayani, S Hina and M Mustafa Arab. J. Sci. Eng. 1 1143 (2020)

    Google Scholar 

  30. S Hina, A Shafique and Mustafa Physica A Stat. Mech. Appl. 540 123184 (2020)

    Article  Google Scholar 

  31. M Shahzad, M Ali, F Sultan, W A Khan and Z Hussain Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01669-3

    Article  Google Scholar 

  32. A Sultan, M Mustafa and M Rahi Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233 4980 (2019)

    Article  Google Scholar 

  33. S Suresh, K P Venkitaraj, P Selvakumar and M Chandrasekar Colloids Surf. A Physicochem. Eng. Asp. 388 41 (2011)

    Article  Google Scholar 

  34. S Jana, A Salehi-Khojin and W H Zhong Thermochim. Acta 462 45 (2007)

    Article  Google Scholar 

  35. J Sarkar, P Ghosh and A Adil Renew. Sustain. Energy Rev. 43 164 (2015)

    Article  Google Scholar 

  36. T Hayat and S Nadeem Results Phys. 7 2317 (2017)

    Article  ADS  Google Scholar 

  37. S Nadeem, N Abbas, A U Khan Results Phys. 8 829 (2018)

    Article  ADS  Google Scholar 

  38. M M Maskeen, A Zeeshan, O U Mehmood and M Hassan J. Therm. Anal. Calorim. 138 1127 (2019)

    Article  Google Scholar 

  39. S S U Devi and S A Devi Can. J. Phys. 94 490 (2016)

    Article  ADS  Google Scholar 

  40. S A Devi and S S U Devi Int. J. Nonlinear Sci. Numer. Simul. 17 249 (2016)

    Article  Google Scholar 

  41. M A Mansour, S Siddiqa, R S R Gorla and A M Rashad Therm. Sci. Eng. Prog. 6 57 (2018)

    Article  Google Scholar 

  42. U Khan, A Zaib, and F Mebarek-Oudina Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04680-7

    Article  Google Scholar 

  43. Z Abdel-Nour, A Aissa, F Mebarek-Oudina et al. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09690-z

    Article  Google Scholar 

  44. M Izadi, H F Oztop, M A Sheremet and S A M Mehryan and N Abu-Hamdeh Numer. Heat Transf. Part A Appl. 76 479 (2019)

    Article  ADS  Google Scholar 

  45. T Tayebi and A J Chamkha Numer. Heat Transf. Part A Appl. 71 1159 (2017)

    Article  ADS  Google Scholar 

  46. M Subhani and S Nadeem Appl. Nanosci. 9 447 (2019). https://doi.org/10.1007/s13204-018-0926-2

    Article  ADS  Google Scholar 

  47. S S Ghadikolaei and M Gholinia Int. Commun. Heat Mass Transf. 110 104371 (2020)

    Article  Google Scholar 

  48. H Schlichting and K Gersten Boundary-Layer Theory (Berlin Heidelberg: Springer) (2017)

    Book  MATH  Google Scholar 

  49. D W Beard and K Walters In Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press) 60 667 (1964)

  50. M Mushtaq, S Asghar and M A Hossain Heat Mass Transf. 43 1049 (2007)

    Article  ADS  Google Scholar 

  51. H C Brinkman J. Chem. Phys. 20 571 (1952)

    Article  ADS  Google Scholar 

  52. R L Hamilton and O K Crosser Ind. Eng. Chem. Fundam. 1 187 (1962)

    Article  Google Scholar 

  53. Y Xuan and W Roetzel Int. J. Heat Mass Transf. 43 3701 (2000)

    Article  Google Scholar 

  54. K Jaan Numerical Methods in Engineering with MATLAB (Cambridge: Cambridge University Press) (2005)

    MATH  Google Scholar 

  55. A Ishak, R Nazar and I Pop Chin. Phys. Lett. 24 2895 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors owe their deep sense of gratitude to the honorable Vice-Chancellor of Defence Institute of Advanced Technology (Deemed University) for constant encouragement and support in the current research. Also, Miss Preeti is thankful to the Defence Research and Development Organization (DRDO), Government of India, for supporting this work under the Senior Research Fellowship (F-16-52-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashar, P., Ojjela, O., Kambhatla, P.K. et al. Numerical investigation of boundary layer flow past a thin heated needle immersed in hybrid nanofluid. Indian J Phys 96, 137–150 (2022). https://doi.org/10.1007/s12648-020-01944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01944-8

Keywords

Navigation