Skip to main content
Log in

Discharge recession patterns of karstic springs as observed in Triassic carbonate aquifers of Slovakia

Structures des courbes de récession des débits de sources karstiques observées dans les aquifères carbonatés du Trias de Slovaquie

Esquemas de recesión de la descarga de los manantiales kársticos observados en los acuíferos de carbonatos del Triásico de Eslovaquia

斯洛伐克三叠纪碳酸盐岩含水层中岩溶泉流量的衰退模式

Padrões de recessão de descarga de nascentes cársticas observados nos aquíferos carbonáticos Triássicos da Eslováquia

Typy výtokových čiar krasových prameňov v karbonátových triasových zvodnencoch Slovenska

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Master recession curves of 117 karstic springs from Middle and Upper Triassic carbonate aquifers in the Slovakian territory of the mountainous Western Carpathians were assembled from gauged discharge data. Identified slow-flow and fast-flow components were very diversely represented. Fast-flow components were missing in 47% of springs. In another 20% of springs, only fast-flow components were recognized, while slow-flow components were absent. Simultaneous discharge of both slow-flow and fast-flow components was found at 39 springs (33%). Known geology of recharge areas enabled examination of the impact that outcropping dolomites and/or limestones may pose to the discharge recession. It was found that dolomites in springsheds significantly affect slow-flow components, but do not influence the occurrence of the fast-flow ones. The purely fast-flow-driven recession was present both in limestone and dolomitic springsheds, but merely one fast-flow component was typical for the dolomitic ones. Two or three fast-flow components may appear in “purely limestone” springsheds. Recession coefficients of slow-flow components were within the interval of 0.0004–0.18 days−1 and those of fast-flow within 0.0017–0.31 days−1. The duration of the fast-flow components is mostly several days or several tens of days, while the theoretical duration of slow-flow may last for decades. Storage in matrix, fractures or conduits of the saturated zone cannot be separately estimated because, in discharged volumes, water from unsaturated and epikarst zones is included. Variable shapes of assembled master recession curves point to the important influence of unsaturated and epikarst zones on the discharge recessional patterns of karst springs.

Résumé

Les courbes de récession moyennes de 117 sources karstiques des aquifères carbonatés du Trias moyen et supérieur des montagnes des Carpates occidentales sur le territoire slovaque ont été assemblées à partir de données de débits jaugés. Les composantes des écoulements lents et rapides identifiées sont représentées de manière très variable. Les composantes d’écoulement rapide sont absentes pour 47% des sources. Pour un autre 20% des sources, seules les composantes d’écoulement rapide sont identifiées, alors que les composantes d’écoulement lent sont absentes. Le débit simultané de composantes d’écoulements lent et rapide est observé sur 39 sources (33%). La géologie connue dans les zones de recharge permet d’examiner l’impact que les dolomies et/ou les calcaires à l’affleurement pourraient avoir sur la récession du débit. Il est observé que les dolomies dans les bassins d’alimentation impactent significativement les composantes d’écoulement lent, mais n’influencent pas l’occurrence de composantes d’écoulement rapide. La récession uniquement contrôlée par l’écoulement rapide est observée à la fois dans les bassins calcaires et dolomitiques, cependant seulement une composante d’écoulement rapide est typiquement présente dans les bassins dolomitiques. Deux ou trois composantes d’écoulement rapide peuvent apparaitre dans le cas des bassins purement calcaires. Les coefficients de récession des composantes d’écoulement lent sont compris dans l’intervalle 0.0004–0.18 jours−1 et ceux des composantes de l’écoulement rapide dans l’intervalle 0.0017–0.31 jours−1. La durée des composantes d’écoulement rapide va généralement de plusieurs jours à plusieurs dizaines de jours, alors que la durée théorique des composantes d’écoulement lent peut s’étendre sur des dizaines d’années. L’emmagasinement dans la matrice, les fractures ou les conduits de la zone saturée ne peut pas être évalué séparément car, en volumes écoulés, l’eau issue de la zone non saturée et de l’épikarst y est incluse. Les formes variables des courbes de récession moyennes indiquent le rôle important de la zone non saturée et de l’épikarst sur les structures des courbes de récession de débit des sources karstiques.

Resumen

Las curvas principales de recesión de 117 manantiales kársticos de los acuíferos carbonatados del Triásico Medio y Superior en el territorio eslovaco de los Cárpatos Occidentales se ensamblaron a partir de datos de descarga calibrados. Los componentes de flujo lento y rápido identificados estaban representados de forma muy diversa. Los componentes de flujo rápido faltaban en el 47% de los manantiales. En otro 20% de los manantiales, sólo se reconocieron los componentes de flujo rápido, mientras que los de flujo lento estaban ausentes. Se encontró una descarga simultánea de los componentes de flujo lento y rápido en 39 manantiales (33%). La geología conocida de las zonas de recarga permitió examinar el impacto que los afloramientos de dolomitas y/o calizas pueden suponer para la recesión de la descarga. Se encontró que las dolomitas de las fuentes afectan significativamente a los componentes de flujo lento, pero no influyen en la aparición de los de flujo rápido. La recesión impulsada por el flujo rápido estaba presente tanto en las calizas como en las dolomías, pero sólo un componente de flujo rápido era típico de las dolomías. Dos o tres componentes de flujo rápido pueden aparecer en los manantiales “ exclusivamente calcáreos”. Los coeficientes de recesión de los componentes de flujo lento estaban dentro del intervalo de 0.0004–0.18 días−1 y los de flujo rápido dentro de 0.0017–0.31 días−1. La duración de los componentes de flujo rápido es en su mayor parte de varios días o varias decenas de días, mientras que la duración teórica del flujo lento puede durar décadas. El almacenamiento en la matriz, las fracturas o los conductos de la zona saturada no pueden estimarse por separado porque, en los volúmenes descargados, se incluye el agua de las zonas no saturada y epikárstica. Las formas variables de las curvas principales de recesión ensambladas apuntan a la importante influencia de las zonas no saturadas y epikársticas en los patrones de recesión de descarga de los manantiales kársticos.

摘要

根据测量的流量数据,绘制了Carpathians西部山脉斯洛伐克境内的上三叠统碳酸盐含水层的117个岩溶泉的主衰退曲线。识别出的慢速流和快速流部分进行了不同的表达。47%的泉水不存在快速流部分。在另外20%的泉水中,只有快速流部分被识别,而慢速流部分不存在。在39个泉水(33%)处发现了慢速流和快速流方式的同时排泄。当补给区的地质条件已知时,可调查白云岩和/或石灰石露头可能对排泄量衰退造成的影响。已经发现,泉水中的白云岩显著影响慢速流部分,但不影响产生快速流部分。在石灰岩和白云质泉水中都存在纯快速流驱动的衰减,但对于白云质泉水来说,只有典型的快速流部分。在“纯石灰岩”泉水中可能会出现两个或三个快速流部分。慢速流部分的衰退系数在0.0004–0.18 天−1之内,快速流部分的衰退系数在0.0017–0.31天−1之内。快速流部分的持续时间大部分为几天或几十天,而慢速流理论上可持续数十年。在饱和区的基质,裂缝或管道中的存储量无法单独估算,因为在排泄量中,包括了来自非饱和区和表层岩溶带的水。绘制后的主衰退曲线的不同形状表明了非饱和和表层岩溶带对岩溶泉水排泄衰退模式的重要影响。

Resumo

Curvas mestras de recessão de 117 nascentes cársticas de aquíferos carbonáticos do Triássico Médio e Superior no território eslovaco dos montanhosos Cárpatos Ocidentais foram elaboradas a partir de dados aferidos de descarga. Os componentes de fluxo lento e fluxo rápido identificados foram representados de forma muito diversa. Os componentes de fluxo rápido estavam ausentes em 47% das nascentes. Em outras 20% das nascentes, apenas os componentes de fluxo rápido foram reconhecidos, enquanto os componentes de fluxo lento estavam ausentes. A descarga simultânea de ambos os componentes de fluxo lento e fluxo rápido foi encontrada em 39 nascentes (33%). A geologia conhecida das áreas de recarga permitiu examinar o impacto que os afloramentos de dolomitas e/ou calcários podem representar para a recessão de descarga. Constatou-se que dolomitas em áreas de recarga de nascentes afetam significativamente os componentes de fluxo lento, mas não influenciam na ocorrência dos componentes de fluxo rápido. A recessão impulsionada exclusivamente pelo fluxo rápido estava presente em ambas as áreas de recarga calcária e dolomítica, mas apenas um componente de fluxo rápido era típico para os dolomíticos. Dois ou três componentes de fluxo rápido podem aparecer em áreas de recarga de “calcário puro”. Os coeficientes de recessão de componentes de fluxo lento estão em um intervalo entre 0.0004–0.18 dias−1 e aqueles de fluxo rápido entre 0.0017–0.31 dias−1. A duração dos componentes de fluxo rápido é principalmente de vários dias ou várias dezenas de dias, enquanto a duração teórica do fluxo lento pode durar décadas. Armazenamento em matriz, fraturas ou condutos da zona saturada não podem ser estimados separadamente porque, nos volumes descarregados, a água de zonas não saturadas e epicársticas está incluída. As formas variáveis das curvas de recessão mestras agregadas apontam para a importante influência de zonas não saturadas e epicársticas sobre os padrões de recessão de descarga das nascentes cársticas.

Abstrakt

Pre 117 krasových prameňov odvodňujúcich stredno– a vrchnotriasové karbonátové zvodnence slovenských Západných Karpát boli podľa výsledkov monitorovania výdatností zostavené ich reprezentatívne výtokové čiary. Identifikované pomalé (exponenciálne) a rýchle (lineárne) odtokové zložky (odtokové subrežimy) mali veľmi rôznorodé zastúpenie. Rýchle zložky odtoku absentovali v 47% prípadov. V ďalších 20% prameňov boli naopak zastúpené iba rýchle odtokové zložky, pričom exponenciálne úplne chýbali. Súčasná prítomnosť oboch typov subrežimov bola zaznamenaná v prípade 39 prameňov (33%). Znalosť pomerného zastúpenia vápencov a dolomitov v infiltračných oblastiach prameňov umožnila skúmanie potenciálneho vplyvu horninového prostredia na tvar výtokovej čiary a teda prítomnosť jednotlivých typov subrežimov. Výskyt dolomitov v infiltračných oblastiach sa jednoznačne odráža v prítomnosti pomalých odtokových zložiek, avšak vôbec nevylučuje aj prejavy rýchlych odtokových subrežimov. Reprezentatívne výtokové čiary zložené výlučne len z rýchlych subrežimov sa vyskytovali rovnako v infiltračných oblastiach s prevahou vápencov ako aj s dominanciou dolomitov, avšak v prípade prevahy dolomitov sa typicky prejavovala prítomnosť výlučne len jedného rýchleho subrežimu. V „čisto vápencových “infiltračných oblastiach sa naopak vyskytovala superpozícia dvoch alebo troch rýchlych subrežimov. Koeficienty vyprázdňovania mali pre exponenciálne subrežimy veľkosť 0.0007–0.18 deň−1 a pre lineárne subrežimy 0.0017–0.31 deň−1. Čas trvania vyprázdňovania je pre rýchle subrežimy väčšinou v rozsahu niekoľko dní až niekoľko desiatok dní, zatiaľ čo teoretická doba vyprázdňovania môže byť v prípade pomalých subrežimov až niekoľko dekád. Presné stanovenie objemu podzemnej vody obsiahnutej v horninovej matrix, v puklinách alebo v krasových kanáloch zóny nasýtenia nie je možné, nakoľko vo vytečenom objeme vôd je zahrnutá aj voda pochádzajúca z nenasýtenej zóny a epikrasu. Rôznorodosť tvarov reprezentatívnych výtokových čiar poukazuje na dôležitý vplyv nenasýtenej zóny a zóny epikrasu na formovanie odtoku podzemnej vody z krasových prameňov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mandip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Barnes BS (1939) The structure of discharge-recession curves. Trans Am Geophys Union IV:721–725

  • Biondić B, eds BM (1995) Hydrogeological aspects of groundwater protection in karstic areas. Final report of COST action, vol 65. ECSC-EC-EAEC, Office for Official Publications of the European Communities, Brussels, Luxembourg, 446 pp

    Google Scholar 

  • Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci/J Sci Hydrol 38(1–2):51–62

    Article  Google Scholar 

  • Boussinesq J (1877) Essai sur la theories des eax courantes. Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France [Essay on the theories of running waters. Memories presented by various scientists at the Academy of Sciences of the National Institute of France], Tome XXIII, No. 1, 680 pp

  • Boussinesq MJ (1904) Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le debit des sources [Theoretical research on the flow of water infiltrated into the ground and on the discharge of sources]. J Mathémat 5e(10)

  • Browne TJ (1978) An analysis of low streamflow recession curves in Devon. Report and Transaction of the Devonshire Association or the Advancement of Science, Literature and Art (110):81–94

  • Cao G, Xie Y, Qin R, Wang J, Zhang C (2018) Derivation of karst-fracture conduit flow and laboratory studies using a 3-D printer. Environ Earth Sci 2018(77):498. https://doi.org/10.1007/s12665-018-7679-9

    Article  Google Scholar 

  • Čaučík P (ed), Belan M, Brezianská K, Čaučík P, Lehotová D, Leitmann Š, Molnár Ľ, Slivová V (2019) Vodohospodárska bilancia SR. Vodohospodárska bilancia množstva podzemnej vody za rok 2018 [Water management balance of the Slovak Republic. Water management balance of groundwater quantity for 2018; in Slovak]. Slovenský hydrometeorologický ústav, Bratislava, Special purpose publication, 331 pp

  • Chang Y, Wu J, Jiang G (2015) Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model. Hydrogeol J 2015(23):901–914. https://doi.org/10.1007/s10040-015-1241-6

    Article  Google Scholar 

  • Cooper HH Jr, Rorabaugh MI (1963) Groundwater movements and bank storage due to flood stages in surface streams. US Geol Surv Water Suppl Pap (1536-J):343–366

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs: application to the Oman ophiolite hard-rock aquifer. J Hydrol 274:248–269

    Article  Google Scholar 

  • Drew D, Hötzl H (eds) (1999) Karst hydrogeology and human activities: impacts, consequences and implications. International Contributions to Hydrogeology, vol 20. Balkema, Rotterdam, The Netherlands, 322 pp

  • Drogue C (1972) Analyse statistique des hydrogrammes de décrues des sources karstiques [Statistical analysis of recession hydrographs of karst sources]. J Hydrol 15:49–68

    Article  Google Scholar 

  • Dufoyer A, Massei N, Lecoq N, Marechal JC, Thiery D, Pennequin D, David PY (2019) Links between karst hydrogeological properties and statistical characteristics of spring discharge time series: a theoretical study. Environ Earth Sci 2019(78):400. https://doi.org/10.1007/s12665-019-8411-0

    Article  Google Scholar 

  • Eftimi R, Malík P (2019) Assessment of regional flow type and groundwater sensitivity to pollution using hydrograph analyses and hydrochemical data of the Selita and Blue Eye Karst Springs, Albania. Hydrogeol J 27(6):2045–2059. https://doi.org/10.1007/s10040-019-01974-5

    Article  Google Scholar 

  • Fiorillo F (2011) Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol J 2011(19):1009–1019. https://doi.org/10.1007/s10040-011-0737-y

  • Fiorillo F (2014) The recession of spring hydrographs, focused on karst aquifers. Water Resour Manag 28(7):1781–1805. https://doi.org/10.1007/s11269-014-0597-z

    Article  Google Scholar 

  • Fiorillo F, Guadagno FM (2012) Long karst spring discharge time series and droughts occurrence in southern Italy. Environ Earth Sci 65:2273–2283. https://doi.org/10.1007/s12665-011-1495-9

    Article  Google Scholar 

  • Fiorillo F, Revellino P, Ventafridda G (2012) Karst aquifer draining during dry periods. J Cave Karst Studies 74(2):148–156. https://doi.org/10.4311/2011JCKS0207

    Article  Google Scholar 

  • Forkasiewicz J, Paloc H (1967) Le régime de tarissement de la Foux de la Vis. Etude préliminaire [The Foux de la Vis drying regime]. AIHS Colloque Hydrogéologie des roches fissurées, Dubrovnik (Yugoslavia) (1):213–228

  • Giacopetti M, Materazzi M, Pambianchi G, Posavec K (2017) Analysis of mountain springs discharge time series in the Tennacola stream catchment (central Apennine, Italy). Environ Earth Sci 2017(76):20. https://doi.org/10.1007/s12665-016-6339-1

    Article  Google Scholar 

  • Goldscheider N, Drew D (eds) (2007) Methods in karst hydrogeology. International Contribution to Hydrogeology 26, Taylor and Francis, London, 264 pp

    Google Scholar 

  • Gregor M (2008) Vývoj programov na analýzu časových radov výdatností prameňov a prietokov vodných tokov [Software development for time-series analysis of springs yields and river discharges]. Podzemná voda 14(2):191–200

    Google Scholar 

  • Gregor M, Malík P (2012) Construction of master recession curve using genetic algorithms. J Hydrol Hydromech 60(1):3–15. https://doi.org/10.2478/v10098-012-0001-8

    Article  Google Scholar 

  • Gregor M, Malík P (2016) User manual for HydroOffice RC 4.0 tool. Online only, 35 pp. http://hydrooffice.org. Accessed Nov 2020

  • Griffiths GA, Clausen B (1997) Streamflow recession in basins with multiple water storages. J Hydrol 190:60–74

    Article  Google Scholar 

  • Hall FR (1968) Base-flow recessions: a review. Water Resour Res 4(5):973–983

    Article  Google Scholar 

  • Hók J, Pelech O, Teťák F, Németh Z, Nagy A (2019) Outline of the geology of Slovakia (W. Carpathians). Mineralia Slovaca 51(2019):31–60

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union (14):446–460

  • Jakada H, Chen Z, Luo M, Zhou H, Wang Z, Habib M (2019) Watershed characterization and hydrograph recession analysis: a comparative look at a karst vs. non-karst watershed and implications for groundwater resources in Gaolan River Basin, southern China. Water 11(4):743. https://doi.org/10.3390/w1104074

    Article  Google Scholar 

  • James LD, Thompson WO (1970) Least squares estimation of constants in a linear recession model. Water Resour Res 6(4):1062–1069

    Article  Google Scholar 

  • Jeannin P-Y, Sauter M (1998) Analysis of karst hydrodynamic behaviour using global approaches: a review. Bull Hydrogeol 16:31–48

    Google Scholar 

  • Káčer Š, Polák M, Bezák V, Hók J, Teťák F, Konečný V, Kučera M, Žec B, Elečko M, Hraško Ľ, Kováčik M, Pristaš J, Káčer Š, Antalík M, Lexa J, Zvara I, Fritzman R, Vlachovič J, Bystrická G, Brodianska M, Potfaj M, Madarás J, Nagy A, Maglay J, Ivanička J, Gross P, Rakús M, Vozárová A, Buček S, Boorová D, Šimon L, Mello J (2005) Slovenská republika: digitálna geologická mapa v M 1:50,000 a 1:500,000. [Slovak Republic: digital geological map at a scale of 1:50,000 and 1:500,000; in Slovak]. Manuscript, Geofond Archive of the State Geological Institute of Dionýz Štúr, Bratislava, Slovakia, 42 pp

    Google Scholar 

  • Kavousi A, Raeisi E (2015) Estimation of groundwater mean residence time in unconfined karst aquifers using recession curves. J Cave Karst Stud, Nat Speleol Soc Bull 77(2):108–119. https://doi.org/10.4311/2014ES0106

    Article  Google Scholar 

  • Kovács A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modelling approach. PhD Thesis, La Faculté des sciences de ľUniversité de Neuchâtel, Switzerland, 131 pp

    Google Scholar 

  • Kovács A, Perrochet P (2008) A quantitative approach to spring hydrograph decomposition. J Hydrol 352(1–2):16–29

    Article  Google Scholar 

  • Kovács A, Perrochet P, Király L, Jeannin P-Y (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303:152–164. https://doi.org/10.1016/j.jhydrol.2004.08.023

    Article  Google Scholar 

  • Kresic N (2013) Water in karst management, vulnerability, and restoration. McGraw-Hill, New York, 708 pp

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs: engineering, theory, management and sustainability. Elsevier, Amsterdam, 573 pp

    Google Scholar 

  • Kullman E (1980) L‘evaluation du regime des eaux souterraines dans les roches carbonatiques du Mésozoique des Carpates Occidentales par les courbes de tarissement des sources [The evaluation of the groundwater regime in the Mesozoic carbonatic rocks of the Western Carpathians by the drying curves of the sources; in French]. Geologický ústav Dionýza Štúra, Bratislava. Západné Karpaty, séria hydrogeológia a inžinierska geológia (3):7-60

  • Kullman E (1983) Režim podzemných vôd s turbulentným prúdením v puklinovo-krasovom horninovom prostredí. [Groundwater regime with turbulent flow in fissure-karst rock environment; in Slovak]. Geologický ústav Dionýza Štúra, Bratislava, Geologické práce (79):237–262

  • Kullman E (1990) Krasovo-puklinové vody [Karst-fissure waters]. Geologický ústav Dionýza Štúra, Bratislava, Slovakia, 184 pp

    Google Scholar 

  • Kullman E (2000) Nové metodické prístupy k riešeniu ochrany a ochranných pásiem zdrojov podzemných vôd v horninových prostrediach s krasovo-puklinovou priepustnosťou [New methods in groundwater protection and delineation of protection zones in fissure-karst rock environment]. Podzemná voda 6(2):31–41

    Google Scholar 

  • Kullman E, Petráš I (1977) Čiary vyčerpávania prameňov a ich využitie pre hydrogeologickú charakteristiku horninového prostredia. [Recession curves of springs and their use for hydrogeological characteristics of rocks; in Slovak]. Geologický ústav Dionýza Štúra Bratislava. Geologické práce – Správy (67):211–238

  • Kullman E, Petráš I (1979) Výtokové pomery prameňov a ich vzťah k horninovému prostrediu. [recession settings of springs and their relation to rock media]. Zborník prác HMÚ (13), Alfa, Bratislava, Slovakia, 307 pp

  • Kullman E, Kissane S, Šalaga I (1997) Evaluation of groundwater resources in Slovakia. PHARE Project no. EU/95/WAT/31 PM Consulting Engineers. Final Report, Manuscript, Slovak Ministry of the Environment, 459 pp

  • Kullman E Jr, Gavurník J, Molnár Ľ, Paľušová Z, Slivová V, Lehotová D, Juhásová Ľ, Palková M (2019) Hydrologická ročenka, Podzemné vody, 2018 [Hydrological yearbook: groundwater, 2018]. Slovenský hydrometeorologický ústav, Bratislava, Slovakia, 182 pp

    Google Scholar 

  • Kurniawan IA, Adji T, Nurkholis A, Haryono E, Fathoni H, Waskito WA, Cahyadi A, Agniy R (2019) Karst aquifer response by time series analysis applications in Jonggrangan karst, Java Island, Indonesia. Environ Earth Sci 78:379. https://doi.org/10.1007/s12665-019-8386-x

    Article  Google Scholar 

  • Lamb R, Beven K (1997) Using interactive recession curve analysis to specify a general catchment storage model. Hydrol Earth Syst Sci 1(1):101–113

    Article  Google Scholar 

  • Lo Russo S, Amanzio G, Ghione R, Maio M (2015) Recession hydrographs and time series analysis of springs monitoring data: application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ Earth Sci 73:7415–7434. https://doi.org/10.1007/s12665-014-3916-z

    Article  Google Scholar 

  • Maillet E (1905) Essais d’hydraulique souteeraine et fluviale [Groundwater and fluvial hydraulic tests]. Hermann, Paris, 218 pp

    Google Scholar 

  • Malík P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mountains, Slovakia. Environ Geol 51:707–711. https://doi.org/10.1007/s00254-006-0384-0

    Article  Google Scholar 

  • Malík P (2010) Separácia hydrogramu pomocou parametrov reprezentatívnej výtokovej čiary [Hydrograph separation into flow components using parameters of the master recession curve]. Podzemná voda XVI(1):113–124

    Google Scholar 

  • Malík P (2015) Evaluating discharge regime of karst aquifers. In: Stevanović Z (ed) Karst aquifers-characterization and engineering. Professional Practice in Earth Sciences, Springer International Publishing Switzerland, Series: Professional Practice in Earth Sciences, 687 pp

  • Malík P, Michalko J (2010) Oxygen isotopes in different recession subregimes of karst springs in the Brezovské Karpaty Mts. (Slovakia). Acta Carsol 39(2):271–287

    Google Scholar 

  • Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 2012(65):2245–2257. https://doi.org/10.1007/s12665-012-1596-0

    Article  Google Scholar 

  • Malík P, Gregor M, Černák R, Bottlik F, Šutarová B, Otruba M (2014) Stupeň skrasovatenia horninového prostredia severného okraja Silickej planiny na základe analýzy výtokových čiar [Degree of rock karstification on the northern rim of the Silická plateau: derived from recession curve analyses]. Podzemná voda 20(2):128–141

    Google Scholar 

  • Mijatović B (1972) Podzemna kraška akumulacija Poličnik kao najracionalniji način rešenja problema vodosnabdevanja Zadra i okoline [Underground karst reservoir Poličnik as the most rational way to solve the problem of water supply in Zadar and its surroundings; in Serbian]. Zbornik Rudarsko Geoloski Fakultet Beograd (16):97-128

  • Milanovic PT (1981) Karst hydrogeology. Water Resources Pub., Littleton, CO, 434 pp

    Google Scholar 

  • Milanović P (2018) Engineering karstology of dams and reservoirs. CRC Boca Raton, FL, 354 pp

    Book  Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473

    Article  Google Scholar 

  • Padilla A, Pulido Bosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32:267–277

    Article  Google Scholar 

  • Pereira LS, Keller HM (1982) Factors affecting recession parameters and flow components in eleven small pre-alp basins. IAHS Publ. 138, IAHS, Wallingford, UK, pp 233–242

  • Posavec K, Bačani A, Nakić Z (2006) A visual basic spreadsheet macro for recession curve analysis. Ground Water 44(5):764–767

    Google Scholar 

  • Posavec K, Parlov J, Nakić Z (2010) Fully automated objective-based method for master recession curve separation. Ground Water 48(4):598–603. https://doi.org/10.1111/j.1745-6584.2009.00669.x

    Article  Google Scholar 

  • Posavec K, Giacopetti M, Materazzi M, Birk S (2017) Method and excel VBA algorithm for modeling master recession curve using trigonometry approach. Ground Water 55:1–8. https://doi.org/10.1111/gwat.12549

    Article  Google Scholar 

  • Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records – update. Water-Resources Investigation Report 98-4148, U.S. Geological Survey, 43 pp

  • Salas Aguilar VM, Gómez VR, Paz Pellat F (2017) An alternative approach in hydrograph decomposition and separation of the baseflow. J Hydrol Hydromech 65(4):343–346. https://doi.org/10.1515/johh-2017-0035

    Article  Google Scholar 

  • Schöeller H (1948) Le régime hydrogéologique des calcaires éocénes du synclinal du Dyr el kef (Tunisie) [The hydrogeological regime of the Eocene limestones of the Dyr El Kef syncline (Tunisia)]. Bull Soc Géol Fr 5(18):167–180

    Article  Google Scholar 

  • Schöeller H (1965) Hydrodynamique dans le Karst [Hydrodynamics in the Karst]. Hydrogeologie des roches fissurées, Actes du colloque de Dubrovnik 1965, IAHS-UNESCO, Paris, p 689

  • Şen Z (2020) General modeling of karst spring hydrographs and development of a dimensionless karstic hydrograph concept. Hydrogeol J 28(2):549–559. https://doi.org/10.1007/s10040-019-02085-x

    Article  Google Scholar 

  • SGIDŠ Map server (2019) Mapserver of the state geological Institute of Dionýz Štúr – geological survey of the Slovak Republic, Bratislava. Slovakia. Digital geological map at a scale of 1:50,000. https://aplgeologysk/gm50js. Accessed 19 Nov 2019

  • Soto B (2019) Trends of hydrograph components in rivers of north of Iberian Peninsula during 1972–2012. Environ Earth Sci 2020(79):16. https://doi.org/10.1007/s12665-019-8761-7

  • Stevanović Z (2019) Karst waters in potable water supply: a global scale overview. Environ Earth Sci 78:662

    Article  Google Scholar 

  • Švasta J, Malík P (2006) Priestorové rozloženie priemerných efektívnych zrážok na území Slovenska [Spatial distribution of mean effective precipitation over Slovakia; in Slovak]. Slovak Association of Hydrogeologists, Podzemná voda XII/2006(1):65–77

  • Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370

    Article  Google Scholar 

  • Tallaksen LM, van Lanen HAJ eds. (2004) Hydrological drought, processes and estimation methods for streamflow and groundwater. Developments in Water Science, Elsevier Science B.V., Amsterdam, 48, pp 579

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geograph Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Centerton, Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, 8, pp 104

  • Toebes C, Strang DD (1964) On recession curves 1: recession equations. J Hydrol 3(2):2–15

    Google Scholar 

  • Torresan F, Fabbri P, Piccinini L, Dalla Libera N, Pola M, Zampieri M (2020) Defining the hydrogeological behavior of karst springs through an integrated analysis: a case study in the Berici Mountains area (Vicenza, NE Italy). Hydrogeol J 28(4):1229–1248. https://doi.org/10.1007/s10040-020-02122-0

  • Werner PW, Sundquist KJ (1951) On the groundwater recession curve for large watersheds. International Association of Hydrological Sciences Publications (33):202–212

  • Worthington S, Ford DC, Beddows PA (2000) Porosity and permeability enhancement in unconfined carbonate aquifers as a result of solution. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. Cave Books, St Louis, pp 463–471

    Google Scholar 

  • Xu B, Ye M, Dong S, Dai Z, Pei Y (2018) A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers. J Hydrol 562:609–622. https://doi.org/10.1016/j.jhydrol.2018.05.039

    Article  Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. COST action 620 final report, Office for Official Publications of the European Communities, Luxembourg, 297 pp

    Google Scholar 

Download references

Funding

The results of this study were obtained thanks to the project support of the European Union cohesion funds, Operational Programme ‘Research & Development’, namely the project ‘Integrated system of outflow processes simulation’ (acronym ISSOP; ITMS code: 26220220066), co-funded by the European Regional Development Fund (ERDF), which is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaromír Švasta or Peter Bajtoš.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the special issue “Five decades of advances in karst hydrogeology”

Appendix

Appendix

Table 3 List of springs including their coordinates, elevations, gauging periods and gauging results (Q = discharge)
Table 4 Parameters of the MR—partial initial discharges and recession coefficients of individual flow components—as were interpreted for every karstic spring
Table 5 Geographical and geological properties of springsheds (areal extent, effective precipitation, mean elevation, relative presence of limestones and dolomites within the respective recharge areas of springs), volumetric percentage of slow-flow and fast-flow components, total water volume and total duration of master recession curve (MRC) in time

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malík, P., Švasta, J., Bajtoš, P. et al. Discharge recession patterns of karstic springs as observed in Triassic carbonate aquifers of Slovakia. Hydrogeol J 29, 397–427 (2021). https://doi.org/10.1007/s10040-020-02276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02276-x

Keywords

Navigation