Skip to main content

Advertisement

Log in

Alterations in DNA methylation patterns in regenerated Chinese cabbage (Brassica rapa ssp. pekinensis) plants derived from tissue culture

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Plant tissue culture is an essential tool in biotechnology. However, tissue-cultured plants often exhibit variations that are either genetic or epigenetic in origin, termed somaclonal variations. Among these variations, DNA methylation is an important heritable epigenetic modification that plays a role in a wide variety of biological processes, including gene expression. In this study, we performed bisulfite sequencing of regenerated Chinese cabbage (Brassica rapa ssp. pekinensis) lines to identify DNA alterations induced by tissue culture. Sequencing data from each regenerated line were compared with reference genome sequences, and common differentially methylated regions (DMRs) were detected in the regenerants. To determine changes in expression levels of DMR-containing genes, we performed quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of the target genes and PCR amplification with bisulfite-converted DNA. We identified DMRs between a non-regenerant line and regenerant lines and selected 10 DMR-associated genes that presented annotation information in Arabidopsis or Brassica rapa. Their expression levels were verified by qRT-PCR to determine the relation between methylation state and gene expression. We observed that genes positioned in DMRs significantly correlated with differential gene expression. We also observed similar methylation patterns in the selected DMRs by PCR-based methylation analysis. The results of this study are a valuable resource for the epigenetic analysis of regenerated lines, especially for Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Bajaj YPS (1990) Somaclonal variation—origin, induction, cryopreservation and implication in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry II, somaclonal variation in crop improvement I. Springer, Berlin, pp 3–48

    Google Scholar 

  • Bock C, Lengauer T (2008) Computational epigenetics. Bioinformatics 24:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035

    Article  CAS  Google Scholar 

  • Bucher E, Reinders J, Mirouze M (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol 15:503–510

    Article  CAS  PubMed  Google Scholar 

  • Coronel CJ, González AI, Ruiz ML, Polanco C (2018) Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. Plant Cell Rep 37:137–152

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholizadeh A (2011) Heterologous expression of stress-responsive DUF538 domain containing protein and its morpho-biochemical consequences. Protein J 30:358

    Article  CAS  Google Scholar 

  • Han G, Wang M, Yuan F, Sui N, Song J, Wang B (2014) The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86:237–253

    Article  CAS  PubMed  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Iglesias FM, Cerdán PD (2016) Maintaining epigenetic inheritance during DNA replication in plants. Front Plant Sci 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA 90:8773–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  • Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K et al (2003) The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 15:1859–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin PJ, Scowcroft W (1981) Somaclonal variation–a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Libeau P, Durandet M, Granier F, Marquis C, Berthomé R, Renou JP et al (2011) Gene expression profiling of Arabidopsis meiocytes. Plant Biol 13:784–793

    Article  CAS  PubMed  Google Scholar 

  • Lim CJ, Yang KA, Hong JK, Choi JS, Yun DJ, Hong JC et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L et al (2020) Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. J Integr Plant Biol 62:360–377

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K et al (2012) An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol 53:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara H, Suzuki N, Muhammad JS, Nanjo S, Ando T, Fujinami H et al (2017) Transient receptor potential vanilloid 4 (TRPV 4) silencing in Helicobacter pylori-infected human gastric epithelium. Helicobacter 22:e12361

    Article  CAS  Google Scholar 

  • Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen SE et al (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci USA 106:11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Müller E, Brown PTH, Hartke S, Lörz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  PubMed  Google Scholar 

  • Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y et al (2010) Solution structures of the trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins Struct Funct Bioinform 78:3033–3047

    Article  CAS  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2014) Covering your bases: inheritance of DNA methylation in plant genomes. Mol Plant 7:472–480

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Park JH, Park YD (2019) Construction of pseudomolecule sequences of Brassica rapa ssp. pekinensis inbred line CT001 and analysis of spontaneous mutations derived via sexual propagation. PloS One 14(9):e0222283

  • Quadrana L, Almeida J, Asis R, Duffy T, Dominguez PG, Bermudez L et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA et al (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1663–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour DK, Becker C (2017) The causes and consequences of DNA methylome variation in plants. Curr Opin Plant Biol 36:56–63

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z et al (2018) DNA methylation footprints during soybean domestication and improvement. Genome Biol 19:1–14

    Article  CAS  Google Scholar 

  • Smulders MJM, De Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Soppe WJJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M et al (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  • Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013a) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M et al. (2013b) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2:e00354

  • Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Taiko KT, Saze H, Kakutani T (2015) DNA methylation within transcribed regions. Plant Physiol 168:1219–1225

    Article  CAS  Google Scholar 

  • Teixeira FK, Colot V (2009) Gene body DNA methylation in plants: a means to an end or an end to a means? EMBO J 28:997–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4:996–1013

    Article  CAS  PubMed  Google Scholar 

  • Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Wrzaczek M (2019) Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2:1–18

    Article  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:e104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing MQ, Zhang YJ, Zhou SR, Hu WY, Wu XT, Ye YJ et al (2015) Global analysis reveals the crucial roles of DNA methylation during rice seed development. Plant Physiol 168:1417–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Han H, Carvalho DDD, Lay FD, Jones P, Liang G (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lang Z, Zhu JK (2018) Dynamics and Function of DNA Methylation in Plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01324601)”, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

HM Lee and JS Park performed the majority of the experiment and data analysis, and developed the regenerated lines. HM Lee and JS Park contributed equally to this work. YH Shin contributed to experimental implementation. YD Park designed the experiment and analyzed data. All authors contributed to and corrected the manuscript.

Corresponding author

Correspondence to Young-Doo Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Inhwa Yeam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HM., Park, JS., Shin, YH. et al. Alterations in DNA methylation patterns in regenerated Chinese cabbage (Brassica rapa ssp. pekinensis) plants derived from tissue culture. Hortic. Environ. Biotechnol. 62, 605–618 (2021). https://doi.org/10.1007/s13580-020-00310-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-020-00310-1

Keywords

Navigation