Skip to main content

Advertisement

Log in

Genetics of primary congenital hypothyroidism—a review

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

Congenital primary hypothyroidism (CH) is a state of inadequate thyroid hormone production detected at birth, caused either by absent, underdeveloped or ectopic thyroid gland (dysgenesis), or by defected thyroid hormone biosynthesis (dyshormonogenesis). A genetic component has been identified in many cases of CH. This review summarizes the clinical and biochemical features of the genetic causes of primary CH.

Methods

A literature review was conducted of gene defects causing congenital hypothyroidism.

Results

Mutations in five genes have predominantly been implicated in thyroid dysgenesis (TSHR, FOXE1, NKX2-1, PAX8, and NKX2-5), the primary cause of CH (85%), and mutations in seven genes in thyroid dyshormonogenesis (SLC5A5, TPO, DUOX2, DUOXA2, SLC6A4, Tg, and DEHAL1). These genes encode for proteins that regulate genes expressed during the differentiation of the thyroid, such as TPO and Tg genes, or genes that regulate iodide organification, thyroglobulin synthesis, iodide transport, and iodotyrosine deiodination. Besides thyroid dysgenesis and dyshormonogenesis, additional causes of congenital hypothyroidism, such as iodothyronine transporter defects and resistance to thyroid hormones, have also been associated with genetic mutations.

Conclusion

The identification of the underlying genetic defects of CH is important for genetic counseling of families with an affected member, for identifying additional clinical characteristics or the risk for thyroid neoplasia and for diagnostic and management purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Toublanc J (1992) Comparison of epidemiological data on congenital hypothyroidism in Europe with those of other parts of the world. Horm Res (Basel) 38:230–235

    Article  CAS  Google Scholar 

  2. Rastogi MV, LaFranchi SH (2010) Congenital hypothyroidism. Orphanet J Rare Dis 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lorey FW, Cunningham GC (1992) Birth prevalence of primary congenital hypothyroidism by sex and ethnicity. Hum Biol 64:531–538

    CAS  PubMed  Google Scholar 

  4. Cao XY, Jiang XM, Dou ZH, Rakeman MA, Zhang ML, O’Donnell K, Ma T, Amette K, DeLong N, DeLong GR (1994) Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med 331:1739–1744

    Article  CAS  PubMed  Google Scholar 

  5. Rovet J, Ehrlich R (1995) Long-term effects of L-thyroxine treatment for congental hypothyroidism. J Pediatr 126:380–386

    Article  CAS  PubMed  Google Scholar 

  6. Grant DB, Smith I, Fuggle PW, Tokar S, Chapple J (1992) Congenital hypothyroidism detected by neonatal screening: relationship between biochemical severity and early clinical features. Arch Dis Child 67:87–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castanet M, Polak M, Bonaiti-Pellie C, Lyonnet S, Czernickow P, Leger J (2001) Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab 86:2009–2014

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson M, Fagman H (2017) Development of the thyroid gland. Development. 144:2123–2140

    Article  CAS  PubMed  Google Scholar 

  9. Deladoey J, Vassart G, Van Vliet G (2007) Possible non-Mendelian mechanisms of thyroid dysgenesis. Endocr Dev 10:29–42

    Article  CAS  PubMed  Google Scholar 

  10. Park SM, Chatterjee VK (2005) Genetics of congenital hypothyroidism. J Med Genet 42:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Field JB, Ealey PA, Marshall NJ, Cockcroft S (1987) Thyroid-stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line. Biochem J 247:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sunthornthepvarakul T, Gootschalk ME, Hayashi Y, Refetoff S (1995) Resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med 332:155–160

    Article  CAS  PubMed  Google Scholar 

  13. De Roux N, Misrahi M, Brauner R, Houang M, Carel JC, Granier M, Le Bouc Y, Ghinea N, Boumeddienne A, Toublanc JE, Milgrom E (1996) Four families with loss of function mutations of the thyrotropin receptor. J Clin Endocrinol Metab 81:4229–4235

    PubMed  Google Scholar 

  14. Russo D, Betterle C, Arturi F, Chiefari E, Girelli ME, Filetti S (2000) A novel mutation in the thyrotropin (TSH) receptor gene causing loss of TSH binding but constitutive receptor activation in a family with resistance to TSH. J Clin Endocrinol Metab 85:4238–4242

    CAS  PubMed  Google Scholar 

  15. Nagashima T, Murakami M, Onigata K, Morimura T, Nagashima K, Mori M, Morikawa A (2001) Novel inactivating missense mutations in the thyrotropin receptor gene in Japanese children with resistance to thyrotropin. Thyroid 11:551–559

    Article  CAS  PubMed  Google Scholar 

  16. Tonacchera M, Agretti P, De Marco G, Perri A, Pinchera A, Vitti P, Chiovato L (2001) Thyroid resistance to TSH complicated by autoimmune thyroiditis. J Clin Endocrinol Metab 86:4543–4546

    Article  CAS  PubMed  Google Scholar 

  17. Zannini M, Avantaggiato V, Biffali E, Arnone MI, Sato K, Pischetola M, Taylor BA, Phillips SJ, Simeone A, Di Lauro R (1997) TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J 16:3185–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Civitreale D, Lonigro R, Sinclair AJ, Di Lauro R (1989) A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J 8:2537–2542

    Article  Google Scholar 

  19. Santisteban P, Acebron A, Polycarpou-Schwarz M, Di Lauro R (1992) Insulin and insulin- like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol Endocrinol 6:1310–1317

    CAS  PubMed  Google Scholar 

  20. Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp M, John R, Lazarus JH, Ludgate M, Chatterjee VKK (1998) Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 19:399–401

    Article  CAS  PubMed  Google Scholar 

  21. Bamforth JS, Hughes IA, Lazarus JH, Weaver CM, Harper PS (1989) Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet 26:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Francis-Lang H, Price M, Polycarpou-Schwartz M, Di Lauro R (1992) Cell-typespecific expression of the rat thyroperoxidase promoter indicates common mechanisms for thyroid-specific gene expression. Mol Cell Biol 12:576–588

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 187:203–216

    Article  Google Scholar 

  24. Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    Article  CAS  PubMed  Google Scholar 

  25. Devriendt K, Vanhole C, Matthijs G, de Zegher F (1998) Deletion of the thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med 338:1317–1318

    Article  CAS  PubMed  Google Scholar 

  26. Doyle DA, Gonzalez I, Thomas B, Scavina M (2004) Autosomal dominant transmission of congenital hypothyroidism, neonatal respiratory distress, and ataxia caused by a mutation of NKX2–1. J Pediatr 145:190–193

    Article  CAS  PubMed  Google Scholar 

  27. Pohlenz J, Dumitrescu A, Zundel D, Martine U, Schonberger W, Koo E, Weiss RE, Cohen RN, Kimura S, Refetoff S (2002) Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest 109:469–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. di Magliano MP, Di Lauro R, Zannini M (2000) PAX8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A 97:13144–13149

    Article  Google Scholar 

  29. Fraizer GC, Shimamura R, Zhang X, Saubders GF (1997) PAX8 regulates human WT1 transcription through a novel DNA binding site. J Biol Chem 272:30678–30687

    Article  CAS  PubMed  Google Scholar 

  30. van Engelen K, Mommersteeg MTM, Baars MJH, Lam J, Ilgun A, van Trotsenburg ASP, Smets AMJ, Christoffels VM, Mulder BJM, Postma AV (2012) The ambiguous role of NKX2-5 mutations in thyroid dysgenesis. PLoS One 7:e52685

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carvalho DP, Dupuy C (2013) Role of the NADPH oxidases DUOX and NOX4 in thyroid oxidative stress. Eur Thyroid J 2:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grasberger H (2010) Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol Cell Endocrinol 322(1–2):99–106

    Article  CAS  PubMed  Google Scholar 

  33. Desai MP (2012) Congenital hypothyroidism: screening dilemma. Indian J Endocrinol Metab 16:153–155

    Article  Google Scholar 

  34. Lichti-Kaiser K, ZeRuth G, Jetten AM (2014) Transcription factor gli-similar 3 (Glis3): implications for the development of congenital hypothyroidism. J Endocrinol Diabetes Obes 2:1024

    PubMed  PubMed Central  Google Scholar 

  35. de Filippis T, Gelmini G, Paraboschi E et al (2017) A frequent oligogenic involvement in congenital hypothyroidism. Hum Mol Genet 26:2507–2514

    Article  PubMed  Google Scholar 

  36. Dimitri P (2017) The role of GLIS3 in thyroid disease as part of a multisystem disorder. Best Pract Res Clin Endocrinol Metab 31:175–182

    Article  CAS  PubMed  Google Scholar 

  37. Patel SR, Richardson JL, Schulze H, Kahle E, Galjart N, Drabek K, Shivdasani RA, Hartwig JH, Italiano JE Jr (2015) Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106:4076–4085

    Article  Google Scholar 

  38. Stoupa A, Adam F, Kariyawasam D et al (2018) TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol Med 10:e9569

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carré A, Stoupa A, Kariyawasam D et al (2017) Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet 26:599–610

    PubMed  Google Scholar 

  40. Peters C, van Trotsenburg ASP, Schoenmakers N (2018) DIAGNOSIS OF ENDOCRINE DISEASE: congenital hypothyroidism: update and perspectives. Eur J Endocrinol 179:297–317

    Article  Google Scholar 

  41. de Filippis T, Marelli F, Nebbia G et al (2016) JAG1 loss-of-function variations as a novel predisposing event in the pathogenesis of congenital thyroid defects. J Clin Endocrinol Metab 101:861–870

    Article  PubMed  Google Scholar 

  42. Opitz R, Hitz M-P, Vandernoot I et al (2015) Functional zebrafish studies based on human genotyping point to Netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 156:377–388

    Article  PubMed  Google Scholar 

  43. Puppin C, Presta I, D'Elia AV et al (2004) Functional interaction among thyroid-specific transcription factors: Pax8 regulates the activity of hex promoter. Mol Cell Endocrinol 214:117–125

    Article  CAS  PubMed  Google Scholar 

  44. Puppin C, D'Elia AV, Pellizzari L et al (2003) Thyroid-specific transcription factors control hex promoter activity. Nucleic Acids Res 31:1845–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barbera JPM, Clements M, Thomas P et al (2000) The homeobox gene hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    Article  CAS  Google Scholar 

  46. Parlato R, Rosica A, Rodriguez-Mallon A et al (2004) An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 276:464–475

    Article  CAS  PubMed  Google Scholar 

  47. Ferretti E, Tosi E, Po A et al (2008) Notch signaling is involved in expression of Thyrocyte differentiation markers and is Down-regulated in thyroid tumors. J Clin Endocrinol Metab 93:4080–4087

    Article  CAS  PubMed  Google Scholar 

  48. Carre A, Rachdi L, Tron E et al (2011) Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development. PLoS One 6:e16752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003

    Article  CAS  PubMed  Google Scholar 

  50. Xu P-X, Zheng W, Laclef C et al (2002) Eya1 is required for the morphogen- esis of mammalian thymus, parathyroid and thyroid. Development 129:3033–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kopp P (2013) Thyroid hormone synthesis. In: Braverman LE, Cooper D (eds) Werner and Ingbar’s the thyroid. A fundamental and clinical text, ed, vol 10. Lippincottt Williams & Wilkins, Philadelphia, pp 48–74

    Google Scholar 

  52. de Vijlder JJM, Vulsma T (1996) Hereditary metabolic disorders causing hypothyroidism. In: Braverman LE, Utiger RD (eds) Werner and Ingbar’s the thyroid, 7th edn. Lippincott-Raven p, Philadelphia, pp 749–755

    Google Scholar 

  53. Mangkalbruks A, Correa Billerbeck A-E, Wajchenberg B, Knobel M, Cox NJ, DeGroot LJ, Medeiros-Neto G (1991) Genetic linkage studies of thyroid peroxidase (TPO) gene in families with TPO deficiency. J Clin Endocrinol Metab 72:471–476

    Article  Google Scholar 

  54. Fujiwara H, Tatsumi K, Miki K, Harada T, Miyai K, Takai SI, Amino N (1997) Congenital hypothyroidism caused by a mutation in the Na+/I2 symporter. Nat Genet 16:124–125

    Article  CAS  PubMed  Google Scholar 

  55. Kosugi S, Sato Y, Matsuda A, Ohyama Y, Fujieda K, Inomata H, Kameya T, Isozak O, Jhiang SM (1998) High prevalence of T354P sodium/iodide symporter gene mutation in Japanese patients with iodide transport defect who have heterogeneous clinical pictures. J Clin Endocrinol Metab 83:4123–4129

    CAS  PubMed  Google Scholar 

  56. Reardon W, O’Mahoney CF, Trembath R, Jan H, Phelps PD (2000) Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene. Q J Med 93:99–104

    Article  CAS  Google Scholar 

  57. Reardon W, Trembath RC (1996) Pendred syndrome. J Med Genet 33:1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Batsakis JG, Nishiyama RH (1962) Deafness with sporadic goitre. Arch Otolaryngol 76:401–406

    Article  CAS  PubMed  Google Scholar 

  59. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    Article  CAS  PubMed  Google Scholar 

  60. Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 14:839–845

    Article  Google Scholar 

  61. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161

    Article  CAS  PubMed  Google Scholar 

  62. Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, Smith RJH, Karniski LP, Sheffield VC (2000) Functional differences of the PDS gene products are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 9:1709–1715

    Article  CAS  PubMed  Google Scholar 

  63. Pfarr N, Borck G, Turk A, Napiontek U, Keilmann A, Muller-Forell W, Kopp P, Pohlenz J (2006) Goitrous congenital hypothyroidism and hearing impairment associated with mutations in the TPO and SLC26A4/PDS genes. J Clin Endocrinol Metab 91:2678–2881

    Article  CAS  PubMed  Google Scholar 

  64. Ishii J, Suzuki A, Kimura T, Tateyama M, Tanaka T, Yazawa T et al (2019) Congenital goitrous hypothyroidism is caused by dysfunction of the iodide transporter SLC26A7. Commun Biol 2:270

    Article  PubMed  PubMed Central  Google Scholar 

  65. Virion A, Michot JL, Deme D, Kaniewski J, Pommier J (1984) NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fraction. Mol Cell Endocrinol 36(1–2):95–105

    Article  CAS  PubMed  Google Scholar 

  66. Caillou B, Dupuy C, Lacroix L, Nocera M, Talbot M, Ohayon R, Deme D, Bidart JM, Schlumberger M, Virion A (2001) Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 86:3351–3358

    CAS  PubMed  Google Scholar 

  67. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, Ris-Stalpers C (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347:95–102

    Article  CAS  PubMed  Google Scholar 

  68. Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase: evolution of an eukaryotic operon equivalent. J Biol Chem 281:18269–18272

    Article  CAS  PubMed  Google Scholar 

  69. Berge-Lefranc JL, Cartonzon G, Mattei MG, Passage E, Malezet-Desmoulins C, Lissitzky S (1985) Localisation of the thyroglobulin gene by in situ hybridization to human chromosomes. Hum Genet 69:28–31

    Article  CAS  PubMed  Google Scholar 

  70. Hishinuma A, Takamatsu J, Ohyama Y, Yokozawa T, Kanno Y, Kuma K, Yoshida S, Matsuura N, Ieiro T (1999) Two novel cysteine substitutions (C1263R and C1995S) of thyroglobulin cause a defect in intracellular transport of thyroglobulin in patients with congenital goiter and the variant type of adenomatous goiter. J Clin Endocrinol Metab 84:1438–1444

    CAS  PubMed  Google Scholar 

  71. Moreno JC (2003) Identification of novel genes involved in congenital hypothyroidism using serial analysis of gene expression. Horm Res 60:96–102

    CAS  PubMed  Google Scholar 

  72. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Leger A, Goudie D, Polak M, Gruters A, Visser TJ (2008) Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med 358:1811–1818

    Article  CAS  PubMed  Google Scholar 

  73. Nicoletti A, Bal M, De Marco G, Baldazzi L, Agretti P, Menabo S, Ballarini E, Cicognani A, Tonacchera M, Cassio A (2009) Thyrotropin-stimulating hormone receptor gene analysis in pediatric patients with non-autoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 94:4187–4194

    Article  CAS  PubMed  Google Scholar 

  74. Cassio A, Nicoletti A, Rizzelo A, Zazzetta E, Bal M, Baldazzi L (2013) Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J Clin Res Pediatr Endocrinol 5:29–39

    PubMed  PubMed Central  Google Scholar 

  75. Weinstein LS, Yu S, Warner DR, Liu J (2001) Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 22(5):675–705

    CAS  PubMed  Google Scholar 

  76. Park E, Jung J, Araki O, Tsunekawa K, Park SY, Kim J, Murakami M, Jeong SY, Lee S (2018) Concurrent TSHR mutations and DIO2 T92A polymorphism result in abnormal thyroid hormone metabolism. Sci Rep 8:10090

    Article  PubMed  PubMed Central  Google Scholar 

  77. Van Herle AJ, Vassart G, Dumont JE (1979) Control of thyroglobulin synthesis and secretion. (first of two parts). N Engl J Med 301:239–249

    Article  PubMed  Google Scholar 

  78. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135

    Article  CAS  PubMed  Google Scholar 

  79. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S (2004) A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74:168–175 Erratum in: Am J Hum Genet 2004;74:598

    Article  CAS  PubMed  Google Scholar 

  80. Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE (2005) Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 77(1):41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gao B, Huber RD, Wenzel A, Vavricka SR, Ismair MG, Remé C, Meier PJ (2005) Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp Eye Res 80(1):61–72

    Article  CAS  PubMed  Google Scholar 

  82. Rodriguez PA, Ibarrola N, Ifiguez MA, Mufioz A, Bernal J (1993) J Clin Invest 91:812–818

    Article  Google Scholar 

  83. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B (1986) The c-erb-a protein is a high-affinity receptor for thyroid hormone. Nature 324:635–640

    Article  CAS  PubMed  Google Scholar 

  84. Singh BK, Yen PM (2017) A clinician’s guide to understanding resistance to thyroid hormone due to receptor mutations in the TRα and TRβ isoforms. Clin Diabetes Endocrinol 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE (2014) Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10:582–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Refetoff S, Weiss RE, Usala SJ (1993) The syndromes of resistance to thyroid hormone. Endocr Rev 14:348–399

    CAS  PubMed  Google Scholar 

  87. Alzahrani AS, Baitei EY, Zou M, Shi Y (2006) Clinical case seminar: metastatic follicular thyroid carcinoma arising from congenital goiter as a result of a novel splice donor site mutation in the thyroglobulin gene. J Clin Endocrinol Metab 91:740–746

    Article  CAS  PubMed  Google Scholar 

  88. Camargo R, Limbert E, Gillam M, Henriques MM, Fernandes C, Catarino AL, Soares J, Alves VA, Kopp P, Medeiros-Neto G (2001) Aggressive metastatic follicular thyroid carcinoma with anaplastic transformation arising from a long-standing goiter in a patient with Pendred's syndrome. Thyroid 11:981–988

    Article  CAS  PubMed  Google Scholar 

  89. Yoon JH, Hong AR, Kim HK, Kang HC (2020) Anaplastic thyroid cancer arising from dyshormonogenetic goiter: c.3070T>C and novel c.7070T>C mutation in the thyroglobulin gene. Thyroid ahead of print https://doi.org/10.1089/thy.2020.0248

  90. Hishinuma A, Fukata S, Kakudo K, Murata Y, Ieiri T (2005) High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid 15:1079–1084

    Article  CAS  PubMed  Google Scholar 

  91. Raef H, Al-Rijjal R, Al-Shehri S, Zou M, Al-Mana H, Baitei EY, Parhar RS, Al-Mohanna FA, Shi Y (2010) Biallelic p.R2223H mutation in the thyroglobulin gene causes thyroglobulin retention and severe hypothyroidism with subsequent development of thyroid carcinoma. J Clin Endocrinol Metab 95:1000–1006

    Article  CAS  PubMed  Google Scholar 

  92. Boelaert K (2009) The association between serum TSH concentration and thyroid cancer. Endocr Relat Cancer 16:1065–1072

    Article  CAS  PubMed  Google Scholar 

  93. Chertok Shacham E, Ishay A, Irit E, Pohlenz J, Tenenbaum-Rakover Y (2012) Minimally invasive follicular thyroid carcinoma developed in dyshormonogenetic multinodular goiter due to thyroid peroxidase gene mutation. Thyroid 22(5):542–546

    Article  CAS  PubMed  Google Scholar 

  94. Corrias A, Mussa A (2013) Thyroid nodules in pediatrics: which ones can be left alone, which ones must be investigated, when and how. J Clin Res Pediatr Endocrinol 5:57–69

    PubMed  PubMed Central  Google Scholar 

  95. Kaykhaei MA, Heidari Z, Mehrazin A (2014) Large thyroid cyst in a patient with congenital hypothyroidism. Arq Bras Endocrinol Metab 58:9

    Article  Google Scholar 

  96. Persani L (2012) Clinical review: central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J Clin Endocrinol Metab 97(9):3068–3078

    Article  CAS  PubMed  Google Scholar 

  97. Alatzoglou KS, Dattani MT (2009) Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum Dev 85(11):705–712

    Article  CAS  PubMed  Google Scholar 

  98. García M, Fernández A, Moreno JC (2014) Central hypothyroidism in children. In Paediatric Thyroidology. Endocr Dev 26:79–107 Ed G Szinnai Basel, Karger

    Article  PubMed  Google Scholar 

  99. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30(7):790–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Eirini Kostopoulou: conceptualization, literature review, original draft preparation, and writing. Konstantinos Miliordos: literature investigation and writing. Bessie Spiliotis: review, editing, and supervision.

Corresponding author

Correspondence to Eirini Kostopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostopoulou, E., Miliordos, K. & Spiliotis, B. Genetics of primary congenital hypothyroidism—a review. Hormones 20, 225–236 (2021). https://doi.org/10.1007/s42000-020-00267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00267-x

Keywords

Navigation