Skip to main content
Log in

Metabarcoding shows multiple Phytophthora species associated with individual plant species: implications for restoration

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Severe tree decline in natural ecosystems around the world has driven Phytophthora research, resulting in a better understanding of the diversity and association of Phytophthora species with different host plants. Improved molecular techniques have contributed significantly to that understanding. The devastating impact of Phytophthora dieback in native vegetation in the southwest of Western Australia (SWWA) has motivated a committed research effort to understand the survival and spread of this pathogen. Hot, dry summers characterise the climate of this ecosystem, and are supposedly unfavourable for a moisture-loving pathogen to survive, spread and thrive. However, Phytophthora cinnamomi can survive within the roots of native plant species allowing for its persistence. Random plant sampling, with metabarcoding from root samples, revealed the presence of at least 23 Phytophthora species on 18 of the 20 plant species growing on mining stockpiles of the Huntly mine site (Alcoa of Australia Limited) in SWWA. Phytophthora cinnamomi was detected on 16 of the 20 plant species. This finding supports the idea that native plant species have a significant role in the survival and spread of P. cinnamomi in the environment. The presence of other Phytophthora species challenges the assumption that P. cinnamomi is the main cause of Phytophthora dieback; the disease may be complex, involving several Phytophthora species. These unexpected detections indicate that plants in the natural forest can serve as the reservoir of inoculum of not only P. cinnamomi but also for other Phytophthora species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data from the metabarcoding run is available from the authors and is stored by the Phytophthora Science and Management Group, Murdoch University.

References

  • Barber, P. A., Paap, T., Burgess, T. I., Dunstan, W., & Hardy, G. E. S. J. (2013). A diverse range of Phytophthora species are associated with dying urban trees. Urban Forestry & Urban Greening, 12, 569–575.

    Article  Google Scholar 

  • Birnbaum, C., Bradshaw, L. E., Ruthrof, K. X., & Fontaine, J. B. (2017). Topsoil stockpiling in restoration: Impact of storage time on plant growth and symbiotic soil biota. Ecological Restoration, 35(3), 237–245.

    Article  Google Scholar 

  • Bose, T., Wingfield, M. J., Roux, J., Vivas, M., & Burgess, T. I. (2020). Phytophthora species associated with roots of native and non-native trees in natural and managed forests. Microbial Ecology. https://doi.org/10.1007/s00248-020-01563-0.

  • Bourret, T. B., Mehl, H. K., Rizzo, D. M., Swiecki, T. J., Bernhardt, E. A., & Hillman, J. M. (2018). Restoration outplantings of nursery-origin Californian flora are heavily infested with Phytophthora. In S. J. Frankel, & K. M. Harrell, (Tech. Coords.) Proceedings of the sudden oak death sixth science symposium. Gen. Tech. Rep. GTR-PSW-255. Albany: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 52.

  • Brasier, C. M., Cooke, D. E., Duncan, J. M., & Hansen, E. M. (2003). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyidesP. megasperma ITS clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107(3), 277–290.

    Article  Google Scholar 

  • Burgess, T. I., White, D., McDougall, K. M., Garnas, J., Dunstan, W. A., Català, S., Carnegie, A. J., Worboys, S., Cahill, D., Vettraino, A.-M., Stukely, M. J. C., Liew, E. C. Y., Paap, T., Bose, T., Migliorini, D., Williams, B., Brigg, F., Crane, C., Rudman, T., & Hardy, G. E. S. J. (2017a). Distribution and diversity of Phytophthora across Australia. Pacific Conservation Biology, 23, 150–162.

    Article  Google Scholar 

  • Burgess, T. I., Scott, J. K., McDougall, K. L., Stukely, M. J. C., Crane, C., Dunstan, W. A., Brigg, F., Andjic, V., White, D., Rudman, T., Arentz, F., Ota, N., & Hardy, G. E. S. J. (2017b). Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Global Change Biology, 23, 1661–1674.

    Article  Google Scholar 

  • Collins, S., McComb, J. A., Howard, K., Shearer, B. L., Colquhoun, I. J., & Hardy, G. E. S. J. (2012). The long-term survival of Phytophthora cinnamomi in mature Banksia grandis killed by the pathogen. Forest Pathology, 42, 28e36.

    Article  Google Scholar 

  • Colquhoun, I. J., & Hardy, G. E. S. J. (2000). Managing the risks of Phytophthora root and collar rot during bauxite mining in the Eucalyptus marginata (jarrah) forest of Western Australia. Plant Disease, 84(2), 116–127.

    Article  CAS  Google Scholar 

  • Colquhoun, I. J., & Kerp, N. L. (2007). Minimizing the spread of a soilborne plant pathogen during a large-scale mining operation. Restoration Ecology Supplement, 15, S85–S93.

    Article  Google Scholar 

  • Crone, M., McComb, J. A., O’Brien, P. A., & Hardy, G. E. S. J. (2013a). Annual and herbaceous perennial native Australian plant species are symptomless hosts of Phytophthora cinnamomi in the Eucalyptus marginata (jarrah) forest of Western Australia. Plant Pathology, 62, 1057–1062.

    Article  Google Scholar 

  • Crone, M., McComb, J. A., O’Brien, P. A., & Hardy, G. E. S. J. (2013b). Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biology, 117(2), 112–123.

    Article  Google Scholar 

  • Cunnington, J. H., Jones, R. H., De Alwis, S., & Minchinton, E. J. (2006). Two new Phytophthora records for Australia. Australasian Plant Pathology, 35(3), 383–384.

    Article  Google Scholar 

  • Dunstan, W. A., Rudman, T., Shearer, B. L., Moore, N. A., Paap, T., Calver, M. C., Dell, B., & Hardy, G. E. S. J. (2010). Containment and spot eradication of a highly destructive, invasive plant pathogen (Phytophthora cinnamomi) in natural ecosystems. Biological Invasions, 12(4), 913–925.

    Article  Google Scholar 

  • Edmiston, R. (1989). Plants resistant to dieback. Published by Department of Conservation and Land Management, Western Australia p. 1–89.

  • Frankel, S., Alexander, J., Benner, D., & Shor, A. (2018). Coordinated response to inadvertent introduction of pathogens to California restoration areas. California Agriculture, 72(4), 205–207.

    Article  Google Scholar 

  • Garbelotto, M., Frankel, S., & Scanu, B. (2018). Soil-and waterborne Phytophthora species linked to recent outbreaks in northern California restoration sites. California Agriculture, 72(4), 208–216.

    Article  Google Scholar 

  • Grant, C. D. (2006). State-and-transition successional model for bauxite mining rehabilitation in the jarrah forest of Western Australia. Restoration Ecology, 14(1), 28–37.

    Article  Google Scholar 

  • Hardy, G. E. S. J., & Sivasithamparam, K. (1988). Phytophthora spp. associated with container-grown plants in nurseries in Western Australia. Plant Disease, 72(5), 435–437.

    Article  Google Scholar 

  • Hüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burgess, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: A distribution and diversity survey. Australasian Plant Pathology, 42(3), 251–260.

    Article  Google Scholar 

  • Hwang, S. C., & Ko, W. H. (1978). Biology of chlamydospores, sporangia, and zoospores of Phytophthora cinnamomi in soil. Phytopathology, 68, 726–731.

    Article  Google Scholar 

  • Jung, T., Hudler, G. W., Jensen-Tracy, S. L., Griffiths, H. M., Fleischman, F., & Osswald, W. (2005). Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist, 19, 159–166.

    Article  Google Scholar 

  • Jung, T., Vettraino, A. M., Cech, T. L., & Vannini, A. (2013). Phytophthora: A global perspective. In K. Lamour (Ed.), The impact of invasive Phytophthora species on European forests (pp. 146–158). CABI: Wallingford. https://doi.org/10.1079/9781780640938.0146.

    Chapter  Google Scholar 

  • Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., Chavarriaga, D., Corcobado, T., Cravador, A., Decourcelle, T., Denton, G., Diamandis, S., Doğmuş-Lehtijärvi, H. T., Franceschini, A., Ginetti, B., Green, S., Glavendekić, M., Hantula, J., Hartmann, G., Herrero, M., Ivic, D., Horta Jung, M., Lilja, A., Keca, N., Kramarets, V., Lyubenova, A., Machado, H., Magnano di San Lio, G., Mansilla Vázquez, P. J., Marçais, B., Matsiakh, I., Milenkovic, I., Moricca, S., Nagy, Z. Á., Nechwatal, J., Olsson, C., Oszako, T., Pane, A., Paplomatas, E. J., Pintos Varela, C., Prospero, S., Rial Martínez, C., Rigling, D., Robin, C., Rytkönen, A., Sánchez, M. E., Sanz Ros, A. V., Scanu, B., Schlenzig, A., Schumacher, J., Slavov, S., Solla, A., Sousa, E., Stenlid, J., Talgø, V., Tomic, Z., Tsopelas, P., Vannini, A., Vettraino, A. M., Wenneker, M., Woodward, S., & Peréz-Sierra, A. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.

    Article  Google Scholar 

  • Jung, T., Pérez-Sierra, A., Durán, A., Horta, M. J., Balci, Y., & Scanu, B. (2018). Canker and decline diseases caused by soil-and airborne Phytophthora species in forests and woodlands. Persoonia: Molecular Phylogeny and Evolution of Fungi, 40, 182–220.

  • Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9(4), 485–498.

    Article  CAS  Google Scholar 

  • Khdiar, M. Y., Burgess, T. I., Scott, P. M., Barber, P. A., & Hardy, G. E. S. J. (2020). Pathogenicity of nineteen Phytophthora species to a range of common urban trees. Australasian Plant Pathology, 1–12.

  • MacDonald, J. D., & Duniway, J. M. (1979). Use of fluorescent antibodies to study the survival of Phytophthora megasperma and P. cinnamomi zoospores in soil. Phytopathology, 69, 436–441.

    Article  Google Scholar 

  • Martinez, A. P. (2017). pairwiseAdonis: Pairwise multilevel comparison using Adonis. R package version 0.0. 1.

  • McCarren, K. L., McComb, J. A., Shearer, B. L., & Hardy, G. E. S. J. (2005). The role of chlamydospores of Phytophthora cinnamomi - a review. Australasian Plant Pathology, 34, 333–338.

    Article  Google Scholar 

  • McDougall, K. L. (1996). Vegetation patterns in the northern jarrah forest of Western Australia in relation to dieback history and the current distribution of Phytophthora cinnamomi. PhD Thesis. Murdoch University, Western Australia, Australia, 94 p.

  • McDougall, K. L. (2005). The responses of native Australian plant species to Phytophthora cinnamomi. Appendix 4. In E. O'Gara, K. Howard, B. Wilson, & G. E. Hardy (Eds.), Management of Phytophthora cinnamomi for Biodiversity Conservation in Australia: Part 2 – National Best Practice Guidelines. A report funded by the Commonwealth Government Department of the Environment and Heritage by the Centre for Phytophthora Science and Management, Murdoch University, Western Australia.

  • Oh, E., Gryzenhout, M., Wingfield, B. D., Wingfield, M. J., & Burgess, T. I. (2013). Surveys of soil and water reveal a goldmine of Phytophthora diversity in south African natural ecosystems. IMA Fungus, 4, 123–131.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2018). Vegan: Community ecology package. V. R package version 2.5-3.

  • Podger, F. D. (1972). Phytophthora cinnamomi, a cause of lethal disease in indigenous plant communities in Western Australia. Phytopathology, 62, 972–981.

    Article  Google Scholar 

  • Rea, A. J., Burgess, T. I., Hardy, G. E. S. J., Stukely, M. J. C., & Jung, T. (2011). Two novel and potentially endemic species of Phytophthora associated with episodic dieback of Kwongan vegetation in the south-west of Western Australia. Plant Pathology, 60, 1055–1068.

    Article  Google Scholar 

  • Rooney-Latham, S., Blomquist, C. L., Soriano, M. C., Guo, Y. Y., Woods, P., Kosta, K. L., et al. (2016). An update on Phytophthora species in California native plant nurseries and restoration areas. In Proceedings of the sudden oak death sixth science symposium. (pp. 51). Gen. Tech. Rep. GTR-PSW-255. Albany: US Department of Agriculture, Forest Service, Pacific Southwest Research Station.

  • Scibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88, 356–368.

    Article  CAS  Google Scholar 

  • Scott, P. M., Burgess, T. I., Barber, P. A., Shearer, B. L., Stukely, M. J., Hardy, G. E., & Jung, T. (2009). Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia-Molecular Phylogeny and Evolution of Fungi, 22, 1–13.

    Article  CAS  Google Scholar 

  • Scott, P., Bader, M. K.-F., Burgess, T. I., Hardy, G., & Williams, N. (2019). Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environmental Science and Policy, 101, 175–182.

    Article  Google Scholar 

  • Shearer, B. L., & Dillon, M. (1996). Susceptibility of plant species in Banksia woodlands on the swan coastal plain, Western Australia, to infection by Phytophthora cinnamomi. Australian Journal of Botany, 44, 433–445.

    Google Scholar 

  • Simamora, A. V., Stukely, M. J. C., Hardy, G. E. S. J., & Burgess, T. I. (2015). Phytophthora boodjera sp. nov., a damping-off pathogen in production nurseries and from urban and natural landscapes, with an update on the status of P. alticola. IMA Fungus, 6, 319–335.

    Article  Google Scholar 

  • Sims, L., Tjosvold, S., Chambers, D., & Garbelotto, M. (2019a). Control of Phytophthora species in plant stock for habitat restoration through best management practices. Plant Pathology, 68(1), 196–204. https://doi.org/10.1111/ppa.12933.

    Article  Google Scholar 

  • Sims, L. L., Chee, C., Bourret, T., Hunter, S., & Garbelotto, M. (2019b). Genetic and phenotypic variation of Phytophthora crassamura isolates from California nurseries and restoration sites. Fungal Biology, 123(2), 159–169.

    Article  CAS  Google Scholar 

  • Strohmayer, P. (1999). Soil stockpiling for reclamation and restoration activities after mining and construction. Restoration and Reclamation Review, 4(7). Retrieved from https://conservancy.umn.edu/bitstream/handle/11299/59360/4.7.Strohmayer.pdf?sequence=1.

  • Stukely, M. J. C., Webster, J. L., Ciampini, J. A., Brown, E., Dunstan, W. A., Hardy, G. E. S. J., Woodman, G. J., Davison, E. M., & Tay, F. C. S. (2007). Phytophthora inundata from native vegetation in Western Australia. Australasian Plant Pathology, 36(6), 606–608.

    Article  Google Scholar 

  • Swiecki, T. J., & Bernhardt, E. A. (2016). Testing and implementing methods for managing Phytophthora root diseases in California native habitats and restoration sites. In Proceedings of the sudden oak death sixth science symposium. (pp. 53-55). Gen. Tech. Rep. GTR-PSW-255. Albany: US Department of Agriculture, Forest Service, Pacific southwest Research Station.

Download references

Acknowledgements

This study was supported through the Australian Research Council (ARC) Linkage project LP130100573 ‘Eradication of Phytophthora cinnamomi from infested haul roads and rehabilitated bauxite mine sites in the Eucalyptus marginata forest’. The assistance received for molecular work from Diane White and Frances Brigg is greatly appreciated.

Funding

This study was supported through the Australian Research Council (ARC) Linkage project LP130100573 ‘Eradication of Phytophthora cinnamomi from infested haul roads and rehabilitated bauxite mine sites in the Eucalyptus marginata forest’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamba Gyeltshen or Giles E. St. J. Hardy.

Ethics declarations

Conflict of interest

The authors declare that no known conflicts of interests exist.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyeltshen, J., Dunstan, W.A., Shaw, C. et al. Metabarcoding shows multiple Phytophthora species associated with individual plant species: implications for restoration. Eur J Plant Pathol 159, 359–369 (2021). https://doi.org/10.1007/s10658-020-02167-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02167-7

Keywords

Navigation