Skip to main content

Advertisement

Log in

Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery: a case study of Jiu Valley, Romania

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface mining represents the dominant driver of land coverage changes in the Jiu Valley mining area in Romania. Detecting and quantifying active mines and reclaimed areas are very important tasks given the effects of surface mining on the environment. In this paper, Landsat imagery for the years 1988, 1998, 2008, and 2017 was used to map the extent of surface mining and reclamation in the Jiu Valley mining area. The satellite images were classified using the Support Vector Machine (SVM) algorithm to map land cover classes, including mined areas, and post-classification comparison (PCC) technique to track changes through time. In order to identify and quantify active mines and reclaimed areas of mined areas, we used indices such as Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and Modified Soil-Adjusted Vegetation Index-2 (MSAVI-2). For the entire area studied, during the period 1988–2017, the extent of surface mining was 6.5%, with peaks in the periods 1988–1998 and 1998–2008, namely, 205.2% and 4.0%, respectively, as a result of the extension of surface exploitation as distinct from that underground. Land cover conversion to mined areas was almost exclusively from agricultural, forest, and pasture. The results show that NDVI estimated the largest surfaces with active mines, reclaimed grassland, and reclaimed woodland, within the mined areas. SAVI and MSAVI-2 estimated larger surfaces classified as reclaimed forest. As a result of the expansion of surface mining areas, the landscape was considerably degraded through mining scars, landscape fragmentation, degradation, and pollution. However, during the past few years, reclamation activity has intensified in the affected areas through the occurrence of spontaneous vegetation, but also through forestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brom, J., Nedbal, V., Prochazka, J., & Pecharova, E. (2012). Changes in vegetation cover, moisture properties and surface temperature of a brown coal dump from 1984 to 2009 using satellite data analysis. Ecological Engineering, 43, 45–52. https://doi.org/10.1016/j.ecoleng.2011.03.001.

    Article  Google Scholar 

  • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007.

    Article  Google Scholar 

  • Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674–2677.

    Article  Google Scholar 

  • Charou, E., Stefouli, M., Dimitrakopoulos, D., Vasiliou, E., & Mavrantza, O. D. (2010). Using remote sensing to assess impact of mining activities on land and water resources. Mine Water and the Environment, 29(1), 45–52. https://doi.org/10.1007/s10230-010-0098-0.

    Article  Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections – revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1036.

    Google Scholar 

  • Chen, D., & Brutsaert, W. (1998). Satellite-sensed distribution and spatial patterns of vegetation parameters over tallgrass prairie. Journal of the Atmospheric Sciences, 55(7), 1225–1238. https://doi.org/10.1175/1520-0469(1998)055<1225:SSDASP>2.0.CO;2.

    Article  Google Scholar 

  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596. https://doi.org/10.1080/0143116031000101675.

    Article  Google Scholar 

  • Czaplewski, R. L., & Patterson, P. L. (2003). Classification accuracy for stratification with remotely sensed data. Forest Science, 49(3), 402–408. https://doi.org/10.1093/forestscience/49.3.402.

    Article  Google Scholar 

  • Davidoiu, A. A. (2017). The role of coal mining in the socio-economic evolution of Jiu Valley. Mining Revue, 23, 20–25.

    Google Scholar 

  • Dinucă, N. C. (2015). Researches on scientific substantiation of ecological reconstruction of sterile dumps resulted from surface mining in Jilt and Motru middle basin. PhD thesis. Transilvania University: Brașov, 150 p (in Romanian).

  • Eastman, R. J. (2003). IDRISI Kilimanjaro, Guide to GIS and image processing. Clark Labs.

  • Eastman, J. R. (2006). IDRISI Andes Guide to GIS and image processing. Clark Labs.

  • Ellis, R. J., & Scott, P. W. (2004). Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sensing of Environment, 93(1–2), 118–130. https://doi.org/10.1016/j.rse.2004.07.004.

    Article  Google Scholar 

  • Erener, A. (2011). Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. International Journal of Coal Geology, 86(1), 20–26. https://doi.org/10.1016/j.coal.2010.12.009.

    Article  CAS  Google Scholar 

  • Fernández-Manso, O., Fernández-Manso, A., Quintano, C., & Álvarez, F. (2005). Mapping forest cover changes caused by mining activities using spectral mixture analysis and object oriented classification. In Håkan Olsson (Ed.), Proceedings of ForestSat 2005 — Scientific workshop in operational tools in forestry using remote sensing techniques, 8c, (p. 77–81).

  • Fernández-Manso, A., Quintano, C., & Robertset, D. (2012). Evaluation of potential of multiple endmember spectral mixture analysis (MESMA) for surface coal mining affected area mapping in different world forest ecosystems. Remote Sensing of Environment, 127, 181–193. https://doi.org/10.1016/j.rse.2012.08.028.

    Article  Google Scholar 

  • Fodor, D., & Lazăr, M. (2006). Ecological occupation and rehabilitation of land in the Oltenia area. AGIR Bulletin, 3, 27–31 (in Romanian).

    Google Scholar 

  • Greșiță, C. I. (2011). Expert system used for monitoring the behaviour of hydrotechnical constructions. REVCAD Journal of Geodesy and Cadastre, 11, 75–84.

    Google Scholar 

  • Greșiță, C. I. (2013). Surveying methods to studying the behaviour of dams. Iași: Tehnopress Publishing House (in Romanian).

    Google Scholar 

  • Hagner, O., & Rigina, O. (1998). Detection of forest decline in Monchegorsk area. Remote Sensing of Environment, 63(1), 11–23. https://doi.org/10.1016/S0034-4257(97)00113-2.

    Article  Google Scholar 

  • Huang, Y., Tian, F., Wang, Y., Wang, M., & Hu, Z. (2015). Effect of coal mining on vegetation disturbance and associated carbon loss. Environmental Earth Sciences, 73(5), 2329–2342. https://doi.org/10.1007/s12665-014-3584-z.

    Article  Google Scholar 

  • Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X.

    Article  Google Scholar 

  • National Institute of Statistics (2017). Energy balance and energy equipment structure, in 2016 (in Romanian).

  • International Energy Agency. (2011). CO2 emissions from fuel combustion. Paris: Highlights IEA Publications.

    Google Scholar 

  • Jackson, D. R., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11(3–4), 185–200. https://doi.org/10.1016/S0167-5877(05)80004-2.

    Article  Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd Edition). New Jersey: Prentice Hallz, Upper Saddle River.

  • Jia, K., Li, Q., Tian, Y., Wu, B., Zhang, F., & Meng, J. (2012). Crop classification using multi-configuration SAR data in the North China Plain. International Journal of Remote Sensing, 33(1), 170–183. https://doi.org/10.1080/01431161.2011.587844.

    Article  CAS  Google Scholar 

  • Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29(8), 941–951. https://doi.org/10.1080/10106049.2014.894586.

    Article  Google Scholar 

  • Karan, S. K., Samadder, S. R., & Maiti, S. K. (2016). Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. Journal of Environmental Management, 182, 272–283. https://doi.org/10.1016/j.jenvman.2016.07.070.

    Article  Google Scholar 

  • Knorn, J., Rabe, A., Radeloff, V. C., Kuemmerle, T., Kozak, J., & Hostert, P. (2009). Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment, 113(5), 957–964. https://doi.org/10.1016/j.rse.2009.01.010.

    Article  Google Scholar 

  • Latifovic, R., Fytas, K., Chen, J., & Paraszczak, J. (2005). Assessing land cover change resulting from large surface mining development. International Journal of Applied Earth Observation and Geoinformation, 7(1), 29–48. https://doi.org/10.1016/j.jag.2004.11.003.

    Article  Google Scholar 

  • Li, J., Zipper, C. E., Donovan, P. F., Wynne, R. H., & Oliphant, A. J. (2015). Reconstructing disturbance history for an intensively mined region by time-series analysis of Landsat imagery. Environmental Monitoring and Assessment, 187(9), 557. https://doi.org/10.1007/s10661-015-4766-1.

    Article  Google Scholar 

  • Lu, D. S., Mausel, P., Brondizio, E. S., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407. https://doi.org/10.1080/0143116031000139863.

    Article  Google Scholar 

  • Martha, T. R., Guha, A., Kumar, K. V., Kamaraju, M. V. V., & Raju, E. V. R. (2010). Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data. International Journal of Remote Sensing, 31(12), 3243–3262. https://doi.org/10.1080/01431160903159340.

    Article  Google Scholar 

  • Moffat, A. J., & McNeill, J. D. (1994). Reclaiming disturbed land for forestry. London: HMSO.

    Google Scholar 

  • Musa, H. D., & Jiya, S. N. (2011). An assessment of mining activities impact on vegetation in Bukuru Jos Plateau State Nigeria using Normalized Differential Vegetation Index (NDVI). Journal of Sustainable Development, 4(6), 150–159.

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, A. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1.

    Article  Google Scholar 

  • Oliphant, A. J., Wynne, R. H., Zipper, C. E., Ford, W. M., Donovan, P. F., & Li, J. (2017). Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA. Biological Invasions, 19(1), 179–195. https://doi.org/10.1007/s10530-016-1271-6.

    Article  Google Scholar 

  • Pal, M., & Foody, G. M. (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5), 1344–1355.

    Article  Google Scholar 

  • Petropoulos, G., Partsinevelos, P., & Mitraka, Z. (2012). Change detection of surface mining activity and reclamation based on a machine learning approach of multitemporal Landsat TM imagery. Geocarto International, 28(4), 323–342. https://doi.org/10.1080/10106049.2012.706648.

    Article  Google Scholar 

  • Richter, N., Staenz, K., & Kaufmann, H. (2008). Spectral unmixing of airborne hyperspectral data for baseline mapping of mine tailings areas. International Journal of Remote Sensing, 29(13), 3937–3956. https://doi.org/10.1080/01431160801891788.

    Article  Google Scholar 

  • Rouse Jr., J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC type III final report: Greenbelt (p. 371). Maryland: NASA.

    Google Scholar 

  • Schmidt, H., & Glaesser, C. (1998). Multitemporal analysis of satellite data and their use in the monitoring of the environmental impacts of open cast lignite mining areas in Eastern Germany. International Journal of Remote Sensing, 19(12), 2245–2260. https://doi.org/10.1080/014311698214695.

    Article  Google Scholar 

  • Sen, S., Zipper, C. E., Wynne, R. H., & Donovan, P. F. (2012). Identifying revegetated mines as disturbance/recovery trajectories using an interannual Landsat chronosequence. Photogrammetric Engineering and Remote Sensing, 78(3), 223–235. https://doi.org/10.14358/PERS.78.3.223.

    Article  Google Scholar 

  • Silleos, N., Alexandridis, T., Gitas, I., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399.

    Article  Google Scholar 

  • Simmons, J. A., Currie, W. S., Eshleman, K. N., Kuers, K., Monteleone, S., Negley, T. L., et al. (2008). Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications, 18(1), 104–118. https://www.jstor.org/stable/40062114. Accessed 25 June 2019.

  • Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003. https://doi.org/10.1080/01431168908903939.

    Article  Google Scholar 

  • Story, M., & Congalton, R. G. (1986). Accuracy assessment - A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399.

    Google Scholar 

  • Townsend, P. A., Helmers, D. P., Kingdon, C. C., McNeil, B. E., de Beurs, K. M., & Eshleman, K. N. (2009). Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sensing of Environment, 113(1), 62–72. https://doi.org/10.1016/j.rse.2008.08.012.

    Article  Google Scholar 

  • Voigt, S., Tetzlaff, A., Zhang, J., Künzer, C., Zhukov, B., Strunz, G., et al. (2004). Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China. International Journal of Coal Geology, 59(1–2), 121–136. https://doi.org/10.1016/j.coal.2003.12.013.

    Article  CAS  Google Scholar 

  • Wu, W., Yao, J., & Kang, T. (2008). Study on land use changes of the coal mining area based on TM image. Journal of Coal Science and Engineering (China), 14(2), 287–290. https://doi.org/10.1007/s12404-008-0062-9.

    Article  Google Scholar 

  • Wright, P., & Stow, R. (1999). Detecting mining subsidence from space. International Journal of Remote Sensing, 20(6), 1183–1188. https://doi.org/10.1080/014311699212939.

    Article  Google Scholar 

  • Zhang, J., Fu, M., Hassani, F. P., Hui, Z., Geng, Y., & Bai, Z. (2011). Land use-based landscape planning and restoration in mine closure areas. Environmental Management, 47(5), 739–750. https://doi.org/10.1007/s00267-011-9638-z.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the USGS website for the Landsat imagery, the National Agency for Cadastre and Land Registration for the colour orthophotos, Transilvania University of Brașov for the aerial photos, and Trimble Inc. for the Trimble R8S receptor and the Trimble Business Center educational software. We also acknowledge Raluca Sinu and Claudia Ciubancan for their language assistance and the three anonymous reviewers for their contribution to improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Vorovencii.

Ethics declarations

Conflict of interest

The author declare that he have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorovencii, I. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery: a case study of Jiu Valley, Romania. Environ Monit Assess 193, 30 (2021). https://doi.org/10.1007/s10661-020-08834-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08834-w

Keywords

Navigation