Skip to main content

Advertisement

Log in

Copper(II) Schiff Base Complex with Electrocatalytic Activity Towards the Oxygen Reduction Reaction and Its Catalase Activity

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The fuel cell is a continuously operating, low environmental impact, highly energy-efficient electrochemical device that has been cited as a clean energy source to replace fossil fuels. However, noble metals, such as platinum, are used as electrocatalysts to improve reaction kinetics, which raises the cost of this renewable energy source. This work aimed to evaluate a graphite paste electrode, modified with a copper(II) coordination compound containing N,O-donor groups, as an electrocatalyst in oxygen reduction reactions (ORR) and its catalase-like activity. Through electrochemical analyses, such as cyclic voltammetry and chronoamperometry, the modified electrode activity was investigated at different pH values and scan rates. Catalase activity was also investigated at different pH values in order to establish which would be the most active. The modified electrode proved to be a promising electrocatalyst in ORR in alkaline medium, and the copper(II) complex actively degraded hydrogen peroxide under alkaline conditions, which can help to increase the lifetime of the fuel cell device.

Graphical Abstract

Copper(II) complex with electrocatalytic activity in the ORR and catalase-like

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, A.G. Olabi, Advances in stationary and portable fuel cell applications. Int. J. Hydrog. Energy 41(37), 16509–16522 (2016)

    Article  CAS  Google Scholar 

  2. X. Xie, R. Wang, K. Jiao, G. Zhang, J. Zhou, Q. Du, Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renew. Energy 117, 125–134 (2018)

    Article  CAS  Google Scholar 

  3. R. Sirirak, B. Jarulertwathana, V. Laokawee, W. Susingrat, T. Sarakonsri, FeNi alloy supported on nitrogen-doped graphene catalysts by polyol process for oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathode. Res. Chem. Intermed. 43(5), 2905–2919 (2017)

    Article  CAS  Google Scholar 

  4. V. Velasco, J.G. Ovejero, P. Crespo, A. Hernando, P. Herrasti, Comparison of FePt and Pt nanostructures for oxygen reduction reaction in basic medium. Electrocatalysis 7(3), 262–268 (2016)

    Article  CAS  Google Scholar 

  5. C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53(15), 4937–4951 (2008)

    Article  CAS  Google Scholar 

  6. F.R. Brushett, M.S. Thorum, N.S. Lioutas, M.S. Naughton, C. Tornow, H.M. Jhong, A.A. Gewirth, P.J.A. Kenis, A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications. J. Am. Chem. Soc. 132(12185), 12185–12187 (2010)

    Article  CAS  Google Scholar 

  7. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)

    Article  CAS  Google Scholar 

  8. S.N.S. Goubert-Renaudin, A. Wieckowsiki, Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. J. Electroanal. Chem. 652(1-2), 44–51 (2011)

    Article  CAS  Google Scholar 

  9. A.V. Palenzuela, L. Zhang, L. Wang, P.L. Cabot, E. Brillas, K. Tsay, J. Zhang, Fe-Nx/C electrocatalysts synthesized by pyrolysis of Fe(II)-2,3,5,6-tetra(2-pyridyl)pyrazine complex for PEM fuel cell oxygen reduction reaction. Electrochim. Acta 56(13), 4744–4752 (2011)

    Article  Google Scholar 

  10. Z.P. Li, B.H. Liu, The use of macrocyclic compounds as electrocatalysts in fuel cells. J. Appl. Electrochem. 40, 475 (2010)

    Article  CAS  Google Scholar 

  11. R. Lin, J. Qiao, H. Zhang, C. Cao, J. Fu, J. Ma, Electrooxidation of hydrogen on Ni-organic metal complex catalysts in acidic media for PEMFCs. J. Nanomater. 2011, 1 (2011)

    Google Scholar 

  12. R.D. Santos, S.F.F. Santos, F.S. Moura, P.J.S. Maia, B.T. Fonseca, R.H.A. Santos, M.E. Medeiros, F.M.S. Garrido, A. Casellato, A nickel(II) coordination polymer derived from a tridentate Schiff base ligand with N,O-donor groups: synthesis, crystal structure, spectroscopy, electrochemical behavior and electrocatalytic activity for H2O2 electroreduction in alkaline medium. Transit. Met. Chem. 42(4), 301–310 (2017)

    Article  Google Scholar 

  13. M.L. Rigsby, D.J. Wasylenko, M.L. Pegis, J.M. Mayer, Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron–porphyrin complexes. J. Am. Chem. Soc. 137(13), 4296–4299 (2015)

    Article  CAS  Google Scholar 

  14. M.S. Thorum, J. Yadav, A.A. Gewirth, Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. Angew. Chem. Int. Ed. 48, 165 (2008)

    Article  Google Scholar 

  15. P. Sen, D. Akagunduz, A.S. Aghdam, F.C. Cebeci, T. Nyokong, T. Catal, Synthesis of novel Schiff base cobalt(II) and iron(iii) complexes as cathode catalysts for microbial fuel cell applications. J. Inorg. Organomet. Polym. 30(4), 1110–1120 (2020)

    Article  CAS  Google Scholar 

  16. K. Shimizu, L. Sepunaru, R.G. Compton, Innovative catalyst design for the oxygen reduction reaction for fuel cells. Chem. Sci. 7(5), 3364–3369 (2016)

    Article  CAS  Google Scholar 

  17. S. Chen, R. Yuan, Y. Chai, F. Hu, Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim. Acta 180(1-2), 15–32 (2013)

    Article  CAS  Google Scholar 

  18. B. Kupcewicz, K. Sobiesiak, K. Malinowska, K. Koprowska, M. Czyz, B. Keppler, E. Budzisz, Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res. 22(5), 2395–2402 (2013)

    Article  CAS  Google Scholar 

  19. B.M. Pires, D.M. Silva, L.C. Vicentin, B.L. Rodrigues, N.M.F. Carvalho, R.B. Faria, Synthesis and characterization of cobalt (II), nickel(II) and copper(II) mononuclear complexes with the ligand 1,3-bis[2-aminoethyl)amino]-2-propanol and their catalase-like activity. PLOS ONE 10(9), e0137926 (2015)

  20. M.M. Ibrahim, G.A.M. Mersal, A.M.M. Ramadan, S.A.E. Shazly, M.A. Amin, Spectroscopic, electrochemical, catechol oxidase and catalase-like activities of new copper(ii) tweezers of benzimidazole incorporating amino acid moieties. Int. J. Electrochem. Sci. 9, 5298 (2014)

    Google Scholar 

  21. J. Kaizer, T. Csay, G. Speier, M. Réglier, M. Giorgi, Synthesis, structure and catalase-like activity of Cu(N-baa)2(phen) (phen = 1,10-phenanthroline, N-baaH = N-benzoylanthranilic acid). Inorg. Chem. Commun. 9(10), 1037–1039 (2006)

    Article  CAS  Google Scholar 

  22. Y. Noritake, N. Umezawa, N. Kato, T. Higuchi, Manganese salen complexes with acid–base catalytic auxiliary: functional mimetics of catalase. Inorg. Chem. 52(7), 3653–3662 (2013)

    Article  CAS  Google Scholar 

  23. P. Zabierowski, J. Szklarzewicz, K. Kurpiewska, K. Lewiński, W. Nitek, Assemblies of substituted salicylidene-2-ethanolamine copper(II) complexes: from square planar monomeric to octahedral polymeric halogen analogues. Polyhedron 49(1), 74–83 (2013)

    Article  CAS  Google Scholar 

  24. T. Luetkmeyer, R.M. Santos, A.B. Silva, R.S. Amado, E.C. Vieira, E. D’Elia, Analysis of free and total glycerol in biodiesel using an electrochemical assay based on a two-enzyme oxygen-electrode system. Electroanalysis 22(9), 995–999 (2010)

    Article  CAS  Google Scholar 

  25. C.A. Caro, G. Cabello, E. Landaeta, J. Pérez, M. González, J.H. Zagal, L. Lillo, Preparation, spectroscopic, and electrochemical characterization of metal(II) complexes with Schiff base ligands derived from chitosan: correlations of redox potentials with Hammett parameters. J. Coord. Chem. 67(23-24), 4114–4124 (2014)

    Article  CAS  Google Scholar 

  26. E. Gungor, H. Kara, Chiral one-dimensional hydrogen bonded, antiferromagnetic chloro-bridged dinuclear copper(II) complex with tridentate Schiff base ligand. Inorg. Chim. Acta 384, 137–142 (2012)

    Article  CAS  Google Scholar 

  27. J. Du, Synthesis, crystal structures, and antibacterial activity of cobalt and copper complexes with tridentate Schiff bases. Synth. React. Inorg. Metal-Organic Nano-Metal Chem. 42(10), 1410–1414 (2012)

    Article  CAS  Google Scholar 

  28. Y.Y. Deng, F.Q. Liu, Y.L. Jin, Synthesis, crystal structure, and electrocatalytic properties of a copper(II) complex of 1,2-bis(2-benzimidazolyl)benzene. Transit. Met. Chem. 37(4), 309–314 (2012)

    Article  CAS  Google Scholar 

  29. A.H. Bayoumi, A.M. Alaghaz, M. Aljahdali, Cu(II), Ni(II), Co(II) and Cr(III) complexes with N2O2-chelating Schiff’s base ligand incorporating azo and sulfonamide moieties: spectroscopic, electrochemical behavior and thermal decomposition studies. Int. J. Electrochem. Sci. 8, 9399 (2013)

    CAS  Google Scholar 

  30. L.A. Saghatforoush, S. Hosseinpour, M.W. Bezpalko, W.S. Kassel, X-ray crystal structural and spectral studies of copper(II) and nickel(II) complexes of functionalized bis(thiosemicarbazone) ligands and investigation of their electrochemical behavior. Inorg. Chim. Acta 484, 527–534 (2019)

    Article  CAS  Google Scholar 

  31. A. Bobrowski, A. Królicka, J. Śliwa, J. Zarębski, Electrochemical sensing of copper employing tellurium film electrode. Electrochim. Acta 252, 453–460 (2017)

    Article  CAS  Google Scholar 

  32. B.M. Pires, F.E. Galdino, J.A. Bonacin, Electrocatalytic reduction of oxygen by metal coordination polymers produced from pentacyanidoferrate(II) complex. Inorg. Chim. Acta 466, 166–173 (2017)

    Article  CAS  Google Scholar 

  33. S. Sohrabi, M. Ghalkhani, S. Dehghanpour, The electrocatalytic stability investigation of a proton manager MOF for the oxygen reduction reaction in acidic media. J. Inorg. Organomet. Polym. Mater. 29, 528 (2018)

    Article  Google Scholar 

  34. R. Zeng, S.D. Poynton, J.P. Kizewski, R.C.T. Slade, J.R. Varcoe, A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells. Electrochem. Commun. 12, 823 (2010)

    Article  CAS  Google Scholar 

  35. H. Liu, L. Zhang, J. Zhang, D. Ghosh, J. Jung, B.W. Downing, E. Whittemore, Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenil porphyrin and its application for fuel cell cathodes. J. Power Sources 161, 743 (2006)

    Article  CAS  Google Scholar 

  36. J. Wu, W. Wang, M. Wang, H. Liu, H. Pan, Electrochemical behavior and direct quantitative determination of tanshinone IIA in micro-emulsion. Int. J. Electrochem. Sci. 11, 5165 (2016)

    Article  CAS  Google Scholar 

  37. E. Chrzescijanska, E. Wudarska, E. Kusmierek, J. Rynkowski, Study of acetylsalicylic acid electroreduction behavior at platinum electrode. J. Electroanal. Chem. 713, 17–21 (2014)

    Article  CAS  Google Scholar 

  38. A. Ourari, H. Nora, C. Noureddine, A. Djouhra, Elaboration of new electrodes with carbon paste containing polystyrene functionalized by pentadentate nickel(II)-Schiff base complex – application to the electrooxidation reaction of methanol and its aliphatic analogs. Electrochim. Acta 170, 311–320 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelise Casellato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionízio, T.P., dos Santos, A.C., da Silva, F.P. et al. Copper(II) Schiff Base Complex with Electrocatalytic Activity Towards the Oxygen Reduction Reaction and Its Catalase Activity. Electrocatalysis 12, 137–145 (2021). https://doi.org/10.1007/s12678-020-00636-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00636-5

Keywords

Navigation