Skip to main content
Log in

Spatial and temporal characteristics of surface albedo in Badain Jaran Desert, China

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Obtaining surface albedo of high accuracy and analyzing spatial and temporal characteristics are essential for detecting change mechanism and influencing factors of surface albedo in deserts. Surface albedo from the Operational Land Imager (OLI) was assimilated into black-sky short-wave albedo (BSA) with an ensemble Kalman filter (EnKF) algorithm, to retrieve the surface albedo of high accuracy in Badain Jaran Desert. The results show that the average relative error decreases from 14.813% to 8.530% when surface albedo based on OLI is assimilated into BSA with the EnKF, and assimilated value can accurately describe the spatial and temporal distribution of surface albedo. The surface albedo has an obvious seasonal difference and presents a U-shape curve in a year, with the highest albedo in winter and lowest in summer. Owing to snow cover in some high-altitude areas, surface albedo is the highest and the spatial difference reaches maximum (variation coefficient=0.14) in winter. The Structure Similarity in surface albedo increases from the hinterland of desert (0.40–0.70) to the outer areas (0.70–0.90), as dune number decreases and distance between dunes increases. Compared with mobile and semi-mobile dunes, the minimum surface albedo of semi-fixed and fixed dunes postpones one month due to lag effect of the vegetation response to precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abd Elaziz M, Bhattacharyya S, Lu SF (2019) Swarm selection method for multilevel thresholding image segmentation. Expert systems with Applications 138:138. https://doi.org/10.1016/j.eswa.2019.07.035

    Article  Google Scholar 

  • Bloch MR (2017) Dust-induced albedo changes of polar ice sheets and glacierization. J Glaciol 5:241–244

    Article  Google Scholar 

  • Burakowski EA, Ollinger SV, Lepine L, Schaaf CB, Wang Z, Dibb JE, Hollinger DY, Kim JH, Erb A, Martin M (2015) Spatial scaling of reflectance and surface albedo over a mixed-use, temperate forest landscape during snow-covered periods. Remote Sens Environ 158:465–477. https://doi.org/10.1016/j.rse.2014.11.023

    Article  Google Scholar 

  • Cao X, Chen X, Bao A (2011) Response of vegetation to temperature and precipitation in Xinjiang during the period of 1998-2009. J Arid Land 3:94–103. https://doi.org/10.3724/SP.J.1227.2011.00094

    Article  Google Scholar 

  • Charney J, Quirk WJ, Chow SH, Kornfield J (1977) A Comparative Study of the Effects of Albedo Change on Drought in Semi–Arid Regions. J Atmospheric Sci 34:1366–1385. https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2

    Article  Google Scholar 

  • Chen AJ, Liu YJ, Bian LG, Zhu XX, Wang W (2012) Analysis of the differences between the two kinds of MODIS albedos over China. Acta Meteorol Sin 70(5):1119–1127

  • Cherchali S, Amram O, Flouzat G (2000) Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes Int J Remote Sens 21:753–775

  • Cierniewski J, Ceglarek J, Karnieli A, Krolewicz S, Kazmierowski C, Zagajewski B (2017) Predicting the diurnal blue-sky albedo of soils using their laboratory reflectance spectra and roughness indices. J Quanti SpectroscRadiat Transf 200:25–31. https://doi.org/10.1016/j.jqsrt.2017.05.033

    Article  Google Scholar 

  • Csiszar I, Gutman G (1999) Mapping global land surface albedo from NOAA AVHRR. J Geophys Res Atmosph 104:6215–6228

    Article  Google Scholar 

  • Curry JA, Schramm JL, Ebert EE (1995) Sea Ice-Albedo Climate Feedback Mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • de Wit AJW, van Diepen CA (2007) Crop model data assimilation with the ensemble Kalman filter for improving regional crop yield forecasts. Agric Forest Meteorol 146:38–56. https://doi.org/10.1016/j.agrformet.2007.05.004

    Article  Google Scholar 

  • Dickinson RE (1983) Land Surface Processes and Climate—Surface Albedos and Energy. Bal Adv Geophys 25:305–353

    Article  Google Scholar 

  • El Kenawy AM, Hereher ME, Robaa SM (2019) An Assessment of the Accuracy of MODIS Land Surface Temperature over Egypt Using Ground-Based Measurements. Remote Sens 11:1–29. https://doi.org/10.3390/rs11202369

    Article  Google Scholar 

  • Gao F, He T, Masek JG, Shuai YM, Schaaf CB, Wang ZS (2014) Angular effects and correction for medium resolution sensors to support crop monitoring. IEEE J Sel Top Appl Earth Obs Remote Sens 7:4480–4489. https://doi.org/10.1109/JSTARS.2014.2343592

    Article  Google Scholar 

  • He T, Liang S, Wang D, Cao Y, Gao F, Yu Y, Feng M (2018) Evaluating land surface albedo estimation from Landsat MSS, TM, ETM +, and OLI data based on the unified direct estimation approach. Remote Sens Environ 204:181–196

    Article  Google Scholar 

  • Huang JX, Sedano F, Huang YB, Ma HY, Li XL, Liang SL, Tian LY, Zhang XD, Fan JL, Wu WB (2016) Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric For Meteorol 216:188–202. https://doi.org/10.1016/j.agrformet.2015.10.013

    Article  Google Scholar 

  • Kandel R, Viollier M, Raberanto P, Duvel JP, Collins W (1998) The ScaRaB Earth Radiation Budget Dataset. Bull Ame Meteorol Soc 79:765–783

    Article  Google Scholar 

  • Karnieli A, Qin ZH, Wu B, Panov N, Yan F (2014) Spatio-temporal dynamics of land-use and land-cover in the mu us Sandy land, China. Using Change Vector Anal Techn Remote Sens 6:9316–9339. https://doi.org/10.3390/rs6109316

    Article  Google Scholar 

  • Kosmas C (2014) Evaluation and Selection of Indicators for Land Degradation and Desertification. Monitor: Methodol Appr Environ Manag 54:951–970

    Google Scholar 

  • Labarre S, Jacquemouda S, Ferraria C, Ferraria A, Derrienb A, Grandina R, Jalludinc M, Lemaîtred F, Métoise M, Pierrot-Deseillignyf M, Rupnikf E, Tanguy B (2019) Retrieving soil surface roughness with the Hapke photometric model: confrontation with the ground truth. Remote Sens Environ 225:1–15. https://doi.org/10.1016/j.rse.2019.02.014

  • Li Q, Sun R, Liu Q, Yu T, Liu QR, Zhu AR (2019) The spatial-temporal variation of land surface Albedo in Hengshui during 2001–2015 by blending landsat and GLASS data. Int J Earth Environ Sci 4:167–177. https://doi.org/10.15344/2456-351X/2019/167

    Article  Google Scholar 

  • Liang S (2001) Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens Environ 76:213–238. https://doi.org/10.1016/S0034-4257(00)00205-4

    Article  Google Scholar 

  • Liang S, Shuey CJ, Russ AL, Fang HL, Chen MZ, Walthall CL, Daughtry CST, Jr RH (2003) Narrowband to broadband conversions of land surface albedo: II. Valid Remote Sens Enviro 84:25–41. https://doi.org/10.1016/S0034-4257(02)00068-8

  • Limbacher JA, Kahn RA (2014) MISR research-aerosol-algorithm refinements for dark water retrievals. Atmosph Meas Techn 7:3989–4007

    Article  Google Scholar 

  • Liu C, Zhao W, Liu B, Meng Y (2019) Distribution characteristics and dynamic changes of vegetation in Badain Jaran desert: based on UAV and MODIS data. J Desert Res 39:92–102. https://doi.org/10.7522/j.issn.1000-694X.2018.00096

    Article  Google Scholar 

  • Liu FS, Chen Y, Lu HY, Shao HB (2017) Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization. Sci Total Environ 578:67–73. https://doi.org/10.1016/j.scitotenv.2016.06.171

    Article  Google Scholar 

  • Liu H, Wang B, Fu C (2008) Relationships between surface albedo, Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu. N China Adv Atmosph Sci 25:757–764

    Article  Google Scholar 

  • Meng J, Du X, Wu B (2013) Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int J Digit Earth 6:203–218. https://doi.org/10.1080/17538947.2011.623189

    Article  Google Scholar 

  • Roman MO, Gatebe CK, Shuai Y, Wang Z, Gao F, Masek JG, He T, Liang S, Schaaf CB (2013) Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and Albedo IEEE Trans Geosci Remote Sens 51: 1393–1404 https://doi.org/10.1109/TGRS.2013.2243457

  • Sha ZY, Zhong JL, Bai YF, Tan XC, Li J (2016) Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China. J Arid Land 8(3):462–477

  • Shang L, Zhang Y, Lu S, Wang S (2015) Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau. Sci Bull 60:435–446. https://doi.org/10.1007/s11434-014-0685-8

    Article  Google Scholar 

  • Shuai YM, Masek JG, Gao F, Schaaf CB (2011) An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens Environ 115:2204–2216. https://doi.org/10.1016/j.rse.2011.04.019

    Article  Google Scholar 

  • Su JL, Wang JH, Li JP, Shang KZ, Kang YZ, Jia XW, Wu ZX (2016) Preliminary analysis of precipitation characteristics in the Badain Jaran and Tengger deserts. J Arid Meteorol 34:216–268. https://doi.org/10.11755/j.issn.1006-7639(2016)-02-0261

    Article  Google Scholar 

  • Tian X, Liu Q, Song Z, Dou B, Li X (2018) Aerosol optical depth retrieval from Landsat 8 OLI images over urban areas supported by MODIS BRDF/Albedo data. IEEE Geosci Remote Sens Lett 15:976–980. https://doi.org/10.1109/lgrs.2018.2827200

  • Waggoner DG, Sokolik IN (2010) Seasonal dynamics and regional features of MODIS-derived land surface characteristics in dust source regions of East Asia. Remote Sens Environ 114:2126–2136. https://doi.org/10.1016/j.rse.2010.04.017

    Article  Google Scholar 

  • Wang M, Dong ZB, Luo WY, Lu JF, Li JY (2015) Spatial variability of vegetation characteristics, soil properties and their relationships in and around China’s Badain Jaran Desert. Environ Earth Sci 74:6847–6858. https://doi.org/10.1007/s12665-015-4685-z

    Article  Google Scholar 

  • Wang ZS, Schaaf CB, Sun QS, Kim J, Erb AM, Gao F, Roman MO, Yang Y, Petroy S, Taylor JR, Masek JG, Morisette JT, Zhang XY, Papuga SA (2017) Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Int J Appl Earth Observ Geoinform 59:104–117. https://doi.org/10.1016/j.jag.2017.03.008

  • Wu ZH, Lei SG, Bian ZF, Huang J, Zhang Y (2019) Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region. Environ Earth Sci 78:1–13. https://doi.org/10.1007/s12665-019-8111-9

    Article  Google Scholar 

  • Xie Y, Wang PX, Bai XJ, Khan J, Zhang SY, Li L, Wang L (2017) Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agricult Forest Meteorol 246:194–206. https://doi.org/10.1016/j.agrformet.2017.06.015

    Article  Google Scholar 

  • Yang B, Bräuning A, Zhang Z, Dong Z, Esper J (2007) Dust storm frequency and its relation to climate changes in northern China during the past 1000 years. Atmosph Environ 41:9288–9299. https://doi.org/10.1016/j.atmosenv.2007.09.025

    Article  Google Scholar 

  • Yang X, Rost KT, Lehmkuhl F, Zhu Z, Dodson J (2004) The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary Int 118:69–85

    Article  Google Scholar 

  • Yu T, Sun R, Xiao Z, Zhang Q, Wang J, Zhang Q, Wang JM, Liu G (2018) Generation of High Resolution Vegetation Productivity from a Downscaling Method. Remote Sens 10:1–22. https://doi.org/10.3390/rs10111748

    Article  Google Scholar 

  • Zhang J, Dong W, Fu C, Wu L (2003a) The influence of vegetation cover on summer precipitation in China: A statistical analysis of NDVI and climate data. Adv Atmosph Sci 20:1002–1006

    Article  Google Scholar 

  • Zhang M, Lin W, Bretherton CS, Hack JJ, Rasch PJ (2003b) A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmosphere Model (CAM2). J Geophys Res 108:1–11. https://doi.org/10.1029/2002JD002523

    Article  Google Scholar 

  • Zheng XQ, Yang F, Li CF, Pan HL, Ji CR,  Ali M, Huo W, Yang XH, Zhou CL (2019) The turbulence intensity of surface layer and land surface processes over Guaizi Lake shifting Sandy land on the northern margin of Badain Jaran Desert. J Desert Res 39:103–112

  • Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612

    Article  Google Scholar 

  • Zhou Y, Wang D, Liang S, Yu Y, He T (2016) Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps. Remote Sens 8:137–153. https://doi.org/10.3390/rs8020137

    Article  Google Scholar 

  • Zhu J, Wang N, Chen H, Dong C, Ha Z (2010) Study on the Boundary and the Area of Badain Jaran Desert Based on Remote Sensing Imagery. Progress Geograp 29:1087–1094

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China [41505008] and Natural Science Foundation for Young Scientists of Shanxi Province, China [201801D221043].

Author information

Authors and Affiliations

Authors

Contributions

Peng He analysed the data and wrote the article, Lishuai Xu made substantial contributions to the conception and designed of the work, Fan Yang agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved, Ruitian Bi revised it critically for important intellectual content, and Zhilei Zhen performed the experiment and collected the data.

Corresponding author

Correspondence to Lishuai Xu.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Xu, L., Bi, R. et al. Spatial and temporal characteristics of surface albedo in Badain Jaran Desert, China. Earth Sci Inform 14, 429–440 (2021). https://doi.org/10.1007/s12145-020-00565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-020-00565-3

Keywords

Navigation