Skip to main content

Advertisement

Log in

Study of the Extremely-Tolerant Brevibacterium linens AE038-8 with Antiviral Activity Against Herpes Simplex Virus Type 1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Brevibacterium linens AE038-8 is an arsenic hyper-tolerant bacterial strain, previously isolated from well water in Tucumán, Argentina. The aim of this study was to characterize this strain regarding its resistance to different stress factors and to evaluate its antiviral activity against Herpes simplex virus type 1 (HSV-1). We found that B. linens AE038-8 was capable of tolerating high concentrations of heavy metals such as Cd(II), Cr(VI) and Cu(II). When grown in the presence of NaCl, it could tolerate up to 3 M in LB25 medium. When cultivated, B. linens released to the supernatants a bioactive principle with antiviral activity against HSV-1 virus regardless growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Extremophiles handbook. Springer, Tokyo, pp 3–15

    Chapter  Google Scholar 

  2. Gugliandolo C, Lentini V, Bunk B, Overmann J, Italiano F, Maugeri TL (2015) Changes in prokaryotic community composition accompanying a pronounced temperature shift of a shallow marine thermal brine pool (Panarea Island, Italy). Extremophiles 19:547–559

    Article  CAS  Google Scholar 

  3. Hendry P (2006) Extremophiles: there’s more to life. Environ Chem 3:75–76

    Article  CAS  Google Scholar 

  4. Park HB, Kwon HC, Lee CH, Yang HO (2009) Glionitrin A, an antibiotic—antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod 72:248–252

    Article  CAS  Google Scholar 

  5. Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  6. Frisvad JC (2005) Halotolerant and halophilic fungi and their extrolite production. In: Adaptation to life at high salt concentrations in Archaea, bacteria, and Eukarya. Springer, Dordrecht, pp 425–439

    Chapter  Google Scholar 

  7. Jančič S, Frisvad JC, Kocev D, Gostinčar C, Džeroski S, Gunde-Cimerman N (2016) Production of secondary metabolites in extreme environments: food-and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One 11:e0169116

    Article  Google Scholar 

  8. Salaheen S, Jaiswal E, Joo J, Peng M, Ho R, OConnor D, Biswas D (2016) Bioactive extracts from berry byproducts on the pathogenicity of Salmonella Typhimurium. Int J Food Microbiol 237:128–135

    Article  CAS  Google Scholar 

  9. Hassan ST, Masarčíková R, Berchová K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336

    Article  CAS  Google Scholar 

  10. Frobert E, Burrel S, Ducastelle-Lepretre S, Billaud G, Ader F, Casalegno JS, Morfin F (2014) Resistance of herpes simplex viruses to acyclovir: an update from a ten-year survey in France. Antivir Res 111:36–41

    Article  CAS  Google Scholar 

  11. Imura K, Chambers JK, Uchida K, Nomura S, Suzuki S, Nakayama H, Miwa Y (2014) Herpes simplex virus type 1 infection in two pet marmosets in Japan. J Vet Sci 76(12):1667–1670

    Article  Google Scholar 

  12. Shannon TE, Griffin SL (2015) Managing aggression in global amnesia following herpes simplex virus encephalitis: the case of EB. Brain Inj 29:118–124

    Article  Google Scholar 

  13. Kopp SJ, Ranaivo HR, Wilcox DR, Karaba AH, Wainwright MS, Muller WJ (2014) Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV. Pediatr Res 76(6):528

    Article  CAS  Google Scholar 

  14. Jiang YC, Feng H, Lin YC, Guo XR (2016) New strategies against drug resistance to herpes simplex virus. Intl J Oral Sci 8:1

    Article  Google Scholar 

  15. Maizel D, Blum JS, Ferrero MA, Utturkar SM, Brown SD, Rosen BP, Oremland RS (2016) Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina. Intl Biodet Biodegr 107:147–153

    Article  CAS  Google Scholar 

  16. Polti MA, Amoroso MJ, Abate CM (2007) Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  CAS  Google Scholar 

  17. Prieur D (2007) An extreme environment on earth: deep-sea hydrothermal vents. Lessons for exploration of Mars and Europa. In: Lectures in astrobiology. Springer, Berlin, Heidelberg, pp 319–345

    Chapter  Google Scholar 

  18. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092

    Article  CAS  Google Scholar 

  19. Collins MD (2006) The genus Brevibacterium. The prokaryotes: Volume 3: Archaea. Bacteria: firmicutes, actinomycetes. Springer-Verlag, pp 1013–1019

  20. Maizel D, Balverdi P, Rosen B, Sales AM, Ferrero MA (2018) Arsenic-hypertolerant and arsenic-reducing bacteria isolated from wells in Tucumán, Argentina. Can J Microbiol 64:876–886

    Article  CAS  Google Scholar 

  21. Sharpe ME, Law BA, Phillips BA, Pitcher DG (1977) Methanethiol production by coryneform bacteria: strains from dairy and human skin sources and Brevibacterium linens. Microbiology 101:345–349

    CAS  Google Scholar 

  22. Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    Article  CAS  Google Scholar 

  23. Norris PR, Burton NP, Foulis NA (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4:71–76

    Article  CAS  Google Scholar 

  24. Kim SH, Ha TKQ, Oh WK, Shin J, Oh DC (2015) Antiviral indolosesquiterpenoid xiamycins C–E from a halophilic actinomycete. J Nat Prod 79:51–58

    Article  Google Scholar 

  25. Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. In: Advances in applied microbiology, vol 43. Academic Press, pp 57–90

  26. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  Google Scholar 

  27. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9

    Article  Google Scholar 

  28. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  29. Nicolli HB, Tineo A, Falcón CM, García JW (2005) Distribución del arsénico y otros elementos asociados en aguas subterráneas de la región de Los Pereyra, provincia de Tucumán, Argentina. Arsénico en aguas: origen, movilidad y tratamiento 4:83e92

    Google Scholar 

  30. Stan-Lotter H, Fendrihan S (2012) Adaption of microbial life to environmental extremes. Springer Vienna, Vienna

    Book  Google Scholar 

  31. Conde-Martínez N, Acosta-González A, Díaz LE, Tello E (2017) Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiol 17:230

    Article  Google Scholar 

  32. Oren A (2013) Life at high salt concentrations. The prokaryotes: prokaryotic communities and ecophysiology. Springer-Verlag Berlin Heidelberg, pp 421–440.

  33. Seck EH, Dufour JC, Raoult D, Lagier JC (2018) Halophilic & halotolerant prokaryotes in humans. Future Microbiol 13:799–812

    Article  CAS  Google Scholar 

  34. Strand M, Carlsson M, Uvell H, Islam K, Edlund K, Cullman I, Wadell G (2014) Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria. Mar Drugs 12(2):799–821

    Article  Google Scholar 

  35. An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, Ha NJ (2012) Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Arch Pharm Res 35:1665–1671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Project PICT 2013-1768 to PJDM, PICT 2013-2281 to LEA and PICT 2008-312 to MAF; from the Ministerio de Ciencia y Tecnología (MINCyT), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Edith Alché.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maizel, D., Salinas, F.M., Solórzano, I. et al. Study of the Extremely-Tolerant Brevibacterium linens AE038-8 with Antiviral Activity Against Herpes Simplex Virus Type 1. Curr Microbiol 78, 688–695 (2021). https://doi.org/10.1007/s00284-020-02316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02316-5

Navigation