Skip to main content
Log in

Regulation of las and rhl Quorum Sensing on Aerobic Denitrification in Pseudomonas aeruginosa PAO1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The bacterium Pseudomonas aeruginosa negatively regulates denitrification under anerobic conditions by two acyl-homoserine lactone quorum-sensing (QS) systems called las and rhl. However, it is unknown whether these systems have the same effect on denitrification in aerobic conditions. In this study, we investigated the regulation of las and rhl systems on aerobic denitrification. We showed that the removal of nitrate in P. aeruginosa PAO1 was repressed by both the las and rhl systems. The las and rhl systems had negative effects on activities of denitrifying enzymes NAP, NIR, NOR, and NOS. At the level of transcription, both QS systems inhibited the expression of target genes napA, nirS, norB, norC, and nosZ. Furthermore, the addition of an acylase, which degrades the acyl-homoserine lactone signals (AHLs), to wild type resulted in an increase in the removal of nitrate. Additionally, in aerobic denitrification process, the transcription factor DNR, which controls denitrification, was repressed by both QS systems. The results implied that modulation of QS in denitrifying bacteria, possibly through quorum quenching or QS inhibition, could help to improve the reduction of nitrate in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616. https://doi.org/10.1016/j.ccr.2004.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yong YC, Zhong JJ (2010) N-Acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochem 45:1944–1948. https://doi.org/10.1016/j.procbio.2010.05.006

    Article  CAS  Google Scholar 

  3. Gao SH, Fan L, Peng L, Guo JH, Agullo-barcelo M, Yuan ZG, Bond PL (2016) Determining multiple responses of Pseudomonas aeruginosa PAO1 to an antimicrobial agent, free nitrous acid. Environ Sci Technol 50:5305–5312. https://doi.org/10.1021/acs.est.6b00288

    Article  CAS  PubMed  Google Scholar 

  4. Arai H, Igarashi H, Kodama T (1995) Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76. https://doi.org/10.1016/0014-5793(95)00885-D

    Article  CAS  PubMed  Google Scholar 

  5. Arai H, Kodama T, Lqarashi Y (1997) Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol Microbiol 25:1141–1148. https://doi.org/10.1046/j.1365-2958.1997.5431906.x

    Article  CAS  PubMed  Google Scholar 

  6. Davies KJ, Lloyd D, Boddy L (1989) The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol 135:2445–2451. https://doi.org/10.1099/00221287-135-9-2445

    Article  CAS  PubMed  Google Scholar 

  7. Ka JO, Urbance J, Ye RW, Ahn TY, Tiedje JM (1997) Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria. FEMS Microbiol Lett 156:55–60. https://doi.org/10.1111/j.1574-6968.1997.tb12705.x

    Article  CAS  PubMed  Google Scholar 

  8. Robertson LA, Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch Microbiol 139:351–354. https://doi.org/10.1007/BF00408378

    Article  CAS  Google Scholar 

  9. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079. https://doi.org/10.1128/JB.185.7.2066-2079.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim M, Jeong SY, Yoon SJ, Ja CS, Kim YH, Kim MJ, Ryu EY, Lee SJ (2008) Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. J Biosci Bioeng 106:498–502. https://doi.org/10.1263/jbb.106.498

    Article  CAS  PubMed  Google Scholar 

  11. Huang HK, Tseng SK (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol 55:99–94. https://doi.org/10.1007/s002530000363

    Article  Google Scholar 

  12. Paul W, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191. https://doi.org/10.1016/j.mib.2009.01.005

    Article  CAS  Google Scholar 

  13. Martin S, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63. https://doi.org/10.1146/annurev-micro-092412-155635

    Article  CAS  Google Scholar 

  14. O’Loughlina CT, Millerb LC, Siryaporm A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. PNAS 110:17981–17986. https://doi.org/10.1073/pnas.1316981110

    Article  Google Scholar 

  15. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246. https://doi.org/10.1016/j.cell.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  16. Huber B, Riedel R, Hentzer M, Hendorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:2517–2528. https://doi.org/10.1049/ip-epa:19960003

    Article  CAS  PubMed  Google Scholar 

  17. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132. https://doi.org/10.1128/jb.179.10.3127-3132.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480. https://doi.org/10.1128/JB.184.23.6472-6480.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toyofuku M, Nomura N, Fujii T, Takaya N, Maseda H, Sawada I, Nakajima T, Uchiyama H (2007) Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. J Bacteriol 189:4969–4972. https://doi.org/10.1128/JB.00289-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyma H (2008) Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol 190:7947–7956. https://doi.org/10.1128/JB.00968-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Kislay P, Kamani MC, Allen HL, Dekievit TR, Gardner PR, Ute S, Rowe JJ, Iglewski BH, Mcdermott TR, Mason RP, Wozniak DJ, Hancock REW, Mathew RP, Noah TL, Hassett DJ (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603. https://doi.org/10.1016/s1534-5807(02)00295-2

    Article  CAS  PubMed  Google Scholar 

  22. Zhu ZQ, Yang Y, Fang AR, Xie GJ, Ren NQ, Xing DF (2020) Quorum sensing systems regulate heterotrophic nitrification-aerobic denitrification by changing the activity of nitrogen-cycling enzymes. Environ Sci Ecotechnol. https://doi.org/10.1016/j.ese.2020.100026

    Article  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1515/bchm2.1951.286.1-6.270

    Article  CAS  PubMed  Google Scholar 

  24. Nicholas DJD, Nason A (1957) Determination of nitrate and nitrite. Meth Enzymol 3:981–984. https://doi.org/10.1016/S0076-6879(57)03489-8

    Article  Google Scholar 

  25. Chen H, Zhao X, Cheng Y, Jiang M, Li X, Xue G (2018) Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions. Environ Sci Technol 52:1404–1412. https://doi.org/10.1021/acs.est.7b04751

    Article  CAS  PubMed  Google Scholar 

  26. Firoved AM, Deretic V (2003) Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185:1071–1081. https://doi.org/10.1128/JB.185.3.1071-1081.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, Tiedje JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609. https://doi.org/10.1128/jb.177.12.3606-3609.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bassler BL (2002) Small talk, cell-to-cell communication in bacteria. Cell 109: 421–424. http://europepmc.org/abstract/MED/12086599

  29. Czajkowski R, Krzy AD, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68. https://doi.org/10.1111/j.1758-2229.2010.00188.x

    Article  CAS  PubMed  Google Scholar 

  30. Schripsema J, Rudder KEED, Vliet TBV, Lankhorst PP, Vroom ED, Kijne JW, Brussel AA (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178:366–371. https://doi.org/10.1128/jb.178.2.366-371.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA (2002) N-Acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 184:4510–4519. https://doi.org/10.1128/JB.184.16.4510-4519.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ravi KG, Sania S, Kusum H (2011) Expression of quorum sensing and virulence factor are interlinked in Pseudomonas aeruginosa: an in vitro approach. Am J Biomed Sci 3:116–125. https://doi.org/10.5099/aj110200116

    Article  CAS  Google Scholar 

  33. Li WF, Zheng JJ, Zhang XP, Deng B (2014) Progress in studies on denitrification enzymes and environmental impact factors. Acta Hydro Sin 38:166–170. https://doi.org/10.7541/2014.22

    Article  CAS  Google Scholar 

  34. Fan LR, Huang SB (2008) Research progress of aerobic denitrification technology. Ind Water Wastewater 39:5–9. https://doi.org/10.3969/j.issn.1009-2455.2008.02.002

    Article  CAS  Google Scholar 

  35. Oikawa Y, Sinmura Y, Ishizaka H, Kawamoto J, Kurihara T, Kato C, Horikoshi K, Tamegai H (2015) Nar is the dominant dissimilatory nitrate reductase under high pressure conditions in the deep-sea denitrifier Pseudomonas sp. MT-1. J Gen Appl Microbiol 161:10–14. https://doi.org/10.2323/jgam.61.10

    Article  CAS  Google Scholar 

  36. Spiro S (1994) The FNR family of transcriptional regulators. Antonie van Lee 66:23–36. https://doi.org/10.1007/BF00871630

    Article  CAS  Google Scholar 

  37. Arat S, Bullerjahn GS, Laubenbacher R (2015) A network biology approach to denitrification in Pseudomonas aeruginosa. PLoS ONE 10:e0118235. https://doi.org/10.1371/journal.pone.0118235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang JH, Shi YH, Zeng GM, Gu YL, Chen GQ, Shi LX, Hu Y, Tang B, Zhou JX (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemistry 157:137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ajai A. Dandekar from University of Washington Medical Center for providing us with the strains and for language editing on this manuscript.

Funding

This study was supported by the Natural Science Foundation of Zhejiang Province (Grant Nos. LY17E080001 and LQ18E080005).

Author information

Authors and Affiliations

Authors

Contributions

XC: Acquisition of data, Analysis and interpretation of data, and Drafting of manuscript. XR: Acquisition of data and Analysis and interpretation of data. JY: Study conception and design, Analysis and interpretation of data, and Critical revision. MW: Study conception and design and Critical revision. NL: Analysis and interpretation of data. DS: Study conception and design.

Corresponding author

Correspondence to Jun Yin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Ruan, X., Yin, J. et al. Regulation of las and rhl Quorum Sensing on Aerobic Denitrification in Pseudomonas aeruginosa PAO1. Curr Microbiol 78, 659–667 (2021). https://doi.org/10.1007/s00284-020-02338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02338-z

Navigation