Skip to main content
Log in

Interaction and Effects of Bacteria Addition on Dichlorodiphenyltrichloroethane Biodegradation by Daedalea dickinsii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The residue of organochlorine pesticides (OCPs) has been a major pollution problem in our environment. Dichlorodiphenyltrichloroethane (DDT) is one of the most common persistent OCPs that continue to pose a serious risk to human health and the environment. Some treatment methods have been developed to reduce and minimize the adverse impacts of the use of DDT, including biodegradation with brown-rot fungi (BRF). However, DDT degradation using BRF has still low degradation rate and needs a long incubation time. Therefore, the ability of BRF need to be enhanced to degrade DDT. Interaction and effect of bacteria addition on biodegradation of DDT by brown-rot fungus Daedalea dickinsii were investigated. The interaction assay between D. dickinsii with bacteria addition showed that the addition of bacterium Pseudomonas aeruginosa did not provide resistance to the growth of D. dickinsii. Meanwhile, bacterium Bacillus subtilis addition has an inhibitory effect on the growth of D. dickinsii. The addition of 10 ml (1 ml = 1.05 × 109 CFU/ml bacteria cell) of P. aeruginosa and B. subtilis was able to improve DDT biodegradation by D. dickinsii from 53.61% to 96.70% and 67.60%, respectively. The highest biodegradation capability of DDT was obtained through addition of 10 ml of P. aeruginosa into the D. dickinsii culture in which the mixed cultures produce final metabolites of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU). This study indicated that the addition of P. aeruginosa can be used for optimization of DDT biodegradation by D. dickinsii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma J, Pan LB, Yang XY, Liu XL, Tao SY, Zhao L, Qin XP, Sun ZJ, Hou H, Zhou YZ (2016) DDT, DDD, and DDE in soil of Xiangfen County, China: residues, sources, spatial distribution, and health risks. Chemosphere 163:578–583

    Article  CAS  PubMed  Google Scholar 

  2. Quensen JF, Mueller SA, Jain MK, Tiedje JM (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280:722–724

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Sun Z, Qiu Y, Yu X, Han X, Ma Y (2018) Integrating bioavailability and soil aging in the derivation of DDT criteria for agricultural soils using crop species sensitivity distributions. Ecotoxicol Environ Saf 165:527–532

    Article  CAS  PubMed  Google Scholar 

  4. Xu HJ, Bai J, Li WY, Zhao LX, Li YT (2019) Removal of persistent DDT residues from soils by earthworms: a mechanistic study. J Hazard Mater 365:622–631

    Article  CAS  PubMed  Google Scholar 

  5. Ahmad R, Salem NM, Estaitieh H (2010) Occurrence of organochlorine pesticide residues in eggs, chicken and meat in Jordan. Chemosphere 78:667–671

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Wang X, Gong P, Yao T (2016) Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau. Chemosphere 149:358–365

    Article  CAS  PubMed  Google Scholar 

  7. Huang H, Zang Y, Chen W, Chen W, Yuen DA, Ding Y, Chen Y, Mao Y, Qi S (2018) Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. Environ Pollut 235:560–570

    Article  CAS  PubMed  Google Scholar 

  8. Fang H, Deng Y, Ge Q, Mei J, Zhang H, Wang H, Yu Y (2018) Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. Ecotoxicol Environ Saf 158:145–153

    Article  CAS  PubMed  Google Scholar 

  9. Juhasz AL, Herde P, Smith E (2016) Oral relative bioavailability of Dichlorodiphenyltrichloroethane (DDT) in contaminated soil and its prediction using invitro strategies for exposure refinement. Environ Res 150:482–488

    Article  CAS  PubMed  Google Scholar 

  10. Semple KT, Morris AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  11. Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments, and fish from lake Tashk, Iran. Achiev Life Sci 9:107–111

    Google Scholar 

  12. Gerber R, Smit NJ, Vuren JHJV, Nakayama SMM, Yohannes YB, Ikenaka Y, Ishizuka M, Wepener V (2016) Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Sci Total Environ 550:522–533

    Article  CAS  PubMed  Google Scholar 

  13. Sudaryanto A, Takahashi S, Tanabe S (2007) Persistent toxic substances in the environment of Indonesia. Develop Environ Sci 7:587–627

    Article  CAS  Google Scholar 

  14. Alamdar A, Syed JH, Malik RN, Katsoyiannis A, Liu J, Li J, Zhang G, Jones KC (2014) Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for airesoil exchange. Sci Total Environ 470:733–741

    Article  PubMed  Google Scholar 

  15. Taylor AR, Wang J, Liao C, Schlenk D, Gan J (2019) Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment. Environ Pollut 245:582–589

    Article  CAS  PubMed  Google Scholar 

  16. Batanero B, Ramirez-Moreno M, Barba F (2016) Electrochemical transformation of DDT into new 2-(Bis(4-chlorophenyl) methylene) and 2-(Bis(4-chlorophenyl) methyl) phenanthrol [9,10-d][1,3] dioxoles. Tetrahedron Lett 57:2290–2293

    Article  CAS  Google Scholar 

  17. Quan X, Zhao X, Chen S, Zhao H, Chen J, Zhao Y (2005) Enhancement of p,p′-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere 60:266–273

    Article  CAS  PubMed  Google Scholar 

  18. Shimakoshi H, Tokunaga M, Baba T, Hisaeda Y (2004) Photochemical dechlorination of DDT catalyzed by a hydrophobic vitamin B12 and a photosensitizer under irradiation with visible light. Chem Commun 16:1806–1807

    Article  Google Scholar 

  19. Tian H, Li J, Mu Z, Li L, Hao Z (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 66(1):84–89

    Article  CAS  Google Scholar 

  20. Balawejder M, Antos P, Czyjt-Kuryło S, Józefczyk R, Pieniążek M (2014) A novel method for degradation of DDT in contaminated soil. Ozone Sci Eng 36(2):166–173

    Article  CAS  Google Scholar 

  21. Cao M, Wang L, Wang L, Chen J, Lu X (2013) Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron. Chemosphere 90:2303–2308

    Article  CAS  PubMed  Google Scholar 

  22. Qin W, Fang G, Wang Y, Wu T, Zhu C, Zhou D (2016) Efficient transformation of DDT by peroxymonosulfate activated with cobalt in aqueous systems: kinetics, products, and reactive species identification. Chemosphere 148:68–79

    Article  CAS  PubMed  Google Scholar 

  23. Purnomo AS, Koyama F, Mori T, Kondo R (2010) DDT degradation potential of cattle manure compost. Chemosphere 80:619–624

    Article  CAS  PubMed  Google Scholar 

  24. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  25. Purnomo AS, Mori T, Kamei I, Kondo R (2011) Basic studies and applications on bioremediation of DDT: a review. Int Biodeterior Biodegrad 65:921–930

    Article  CAS  Google Scholar 

  26. Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Biorem J 5:225–246

    Article  CAS  Google Scholar 

  27. Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1- trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621

    Article  CAS  PubMed  Google Scholar 

  28. Setyo PA, Dwi RH, Sri F, Sulistyo PH, Ichiro K (2018) Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii. Res J Chem Environ 22:151–156

    Google Scholar 

  29. Zang S, Lian B (2009) Synergistic degradation of 2-naphtol by Fusarium proliferatum and Bacillus subtilis in wastewater. J Hazard Mater 166:33–38

    Article  CAS  PubMed  Google Scholar 

  30. Zang S, Lian B, Wang J, Yang Y (2010) Biodegradation of 2-naphthol and its metabolites by coupling Aspergillus niger with Bacillus subtilis. J Environ Sci 22(5):669–674

    Article  CAS  Google Scholar 

  31. Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues: a review. NZJ Agric Res 40:269–282

    Article  CAS  Google Scholar 

  32. Bidlan R (2003) Studies on DDT degradation by bacterial strains. Ph.D. thesis, Central Food Technological Research Institute, University of Mysore, India

  33. Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44

    Article  CAS  Google Scholar 

  34. Rizqi HD, Purnomo AS (2017) The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J Microbiol Biotechnol 33:92

    Article  PubMed  Google Scholar 

  35. Purnomo AS, Rizqi HD, Rafi LH (2020) Culture of bacterium Bacillus subtilis as degradation agent for sea water remediation contaminated by petroleum. J Idn Chem Soc 3(1):53–58

    Article  Google Scholar 

  36. Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin H, Riupassa PA (2016) Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J Chem 28:2731–2736

    Article  CAS  Google Scholar 

  37. Kamei I, Yoshida T, Enami D, Meguro S (2011) Coexisting curtobacterium bacterium promotes the growth of white-rot fungus Stereum sp. Curr Microbiol 64:173–178

    Article  PubMed  Google Scholar 

  38. Purnomo AS, Maulianawati D, Kamei I (2019) Ralstonia pickettii enhance the DDT biodegradation by Pleurotus eryngii. J Microbiol Biotechnol 29:1424–1433

    Article  CAS  PubMed  Google Scholar 

  39. Purnomo AS, Sariwati A, Kamei I (2020) Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 6(6):e04027

    Article  PubMed  PubMed Central  Google Scholar 

  40. Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide- contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21:11305–11312

    Article  CAS  Google Scholar 

  41. Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I (2017) Biodegradation of aldrin and dieldrin by white-rot fungus Pleurotus ostreatus. Curr Microbiol 74:320–324

    Article  CAS  PubMed  Google Scholar 

  42. Purnomo AS, Mori T, Kondo R (2010) Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int Biodeterior Biodegrad 64:560–565

    Article  CAS  Google Scholar 

  43. Purnomo AS, Ashari K, Hermansyah FT (2017) Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant producing bacteria on DDT biodegradation. J Microbiol Biotechnol 27(7):1306–1315

    Article  CAS  PubMed  Google Scholar 

  44. Purnomo AS, Mauliddawati VT, Khoirudin M, Nafwa R, Putra SR (2019) Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi. Int J Environ Sci Technol 16:7555–7564

    Article  CAS  Google Scholar 

  45. Purnomo AS (2017) Microbe-assisted degradation of aldrin and dieldrin. In: Singh SN (ed) Microbe-induced degradation of pesticides, 1st edn. Springer Nature, Cham

    Google Scholar 

  46. Buchweitz JP, Carson K, Rebolloso S, Lehner A (2018) DDT poisoning of big brown bats, Eptesicus fuscus, in Hamilton, Montana. Chemosphere 201:1–5

    Article  CAS  PubMed  Google Scholar 

  47. Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184:281–289

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Wang J (2013) Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere 92:760–764

    Article  CAS  PubMed  Google Scholar 

  49. Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65:691–695

    Article  CAS  Google Scholar 

  50. Sariwati A, Purnomo AS, Kamei I (2017) Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation DDT. Curr Microbiol 74:1068–1069

    Article  CAS  PubMed  Google Scholar 

  51. Kamei I (2016) Co-culturing effects of coexisting bacteria on wood degradation by Trametes versicolor. Curr Microbiol 74:125–131

    Article  PubMed  Google Scholar 

  52. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications, and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  54. Vater J, Kablitz B, Wilde C, Frank P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization time of flight mass spectrometry of lipopeptide biosurin whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant sub surface Bacillus licheniformis BAS 50. Appl Environ Microbiol 61:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karamad D, Khosravi-Darani K, Hosseini H, Tavasoli S, Miller AW (2019) Evaluation of Oxalobacter formigenes DSM 4420 biodegradation activity for high oxalate media content: an in vitro model. Biocatal Agric Biotechnol 22:101378

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim GH, Choi YS, Kim JJ (2009) Improving the efficiency of metal removal from CCA-treated wood using brown rot fungi. Environ Technol 30(7):673–679

    Article  CAS  PubMed  Google Scholar 

  58. Mahmood RJ, Asad MJ, Asgher M, Gulfraz M, Mukhtar T (2017) Analysis of lingolytic enzymes and decolorization of disperse violet S3RL, yellow–brown S2RFL, red W4BS, yellow SRLP and red S3B by brown rot fungi. Pak J Agri Sci 54(2):407–413

    Google Scholar 

  59. Purnomo AS, Mawaddah MO (2020) Biodecolorization of methyl orange by mixed cultures of brown-rot fungus Daedalea dickinsii and bacterium Pseudomonas aeruginosa. Biodiversitas 21(5):2297–2302

    Article  Google Scholar 

  60. Purnomo AS, Andyani NE, Nawfa R, Putra SR (2020) Fenton reaction involvement on methyl orange biodegradation by brown-rot fungus Gloeophyllum trabeum. AIP conference proceedings 2237, 020002

  61. Kaneko S, Yoshitake K, Itakura S, Tanaka H, Enoki A (2005) Relationship between production of hydroxy radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown rot fungi. J Wood Sci 51:262–269

    Article  CAS  Google Scholar 

  62. Wahyuni S, Khaeruni A, Purnomo AS, Asranudin, Holilah, Fatahu (2017) Characterization of mannanase isolated from corncob waste bacteria. Asian J Chem 29:1119–1120

    Article  CAS  Google Scholar 

  63. Jeon HJ, Kim MN (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int Biodeter Biodegr 103:141–146

    Article  CAS  Google Scholar 

  64. Jones SM, Van Dyk J, Pletschke BI (2012) Bacillus subtilis SJ01 produces hemicellulose degrading multi-enzyme complexes. Bio Res 7(1):1294–1309

    Google Scholar 

  65. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  66. Scheibenbogen K, Zytner RG, Lee H, Trevors JT (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Technol Biotechnol 59:53–59

    Article  CAS  Google Scholar 

  67. Soudmand AA, Ayatollahi SS, Mohabatkar H, Zareie M, Shariatpanahi SF (2007) The in situ microbial enhanced oil recovery in fractured porous media. J Pet Sci Eng 58:161–172

    Article  Google Scholar 

  68. Wang S, Nomura N, Nakajima T, Uchiyama H (2012) Case study of relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng 113(5):624–630

    Article  CAS  PubMed  Google Scholar 

  69. Sariwati A, Purnomo AS (2018) The effect of Pseudomonas aeruginosa addition on 1,1,1 Trichloro 2,2 bis (4 chlorophenyls) ethane DDT biodegradation by brown-rot fungus Fomitopsis pinicola. Indon J Chem 18:75–81

    Article  CAS  Google Scholar 

  70. Grizca BE, Setyo PA (2018) Abilities of co-cultures of white-rot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on biodegradation DDT. J Phys Conf Ser 1095:102015

    Google Scholar 

  71. Boelan EG, Purnomo AS (2019) Biodegradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by mixed cultures of white-rot fungus Ganoderma lingzhi and bacterium Pseudomonas aeruginosa. HAYATI J Biosci 26:90–95

    Article  Google Scholar 

  72. Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology, 2nd edn. Academic Press Elsevier, London, ISBN: 978-0-12-370519-8

    Google Scholar 

  73. Wang B, Wang Q, Liu W, Liu X, Hou J, Teng Y, Luo Y, Christie P (2017) Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere 182:137–142

    Article  CAS  PubMed  Google Scholar 

  74. Golovleva L, Skryabin GK (1980) Degradation of DDT and its analogs by Pseudomonas aeruginosa 640x. Biol Bull Acad Sci USSR 7:143–151

    CAS  PubMed  Google Scholar 

  75. Langlois BE, Collins JA, Sides KG (1970) Some factors affecting degradation of organochlorine pesticides by bacteria. J Dairy Sci 53(12):1671–1675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Directorate of Research and Community Service, Institut Teknologi Sepuluh Nopember (ITS), Indonesian Ministry of Education and Culture, under research scheme of “Penelitian Pemula 2020”, Number: 940/PKS/ITS/2020.

Author information

Authors and Affiliations

Authors

Contributions

HDR and ASP conceived the original idea, also discussed with IK. The experiment and analysis were performed by HDR. The main ideas behind the experiments were conceived by ASP with many helpful suggestions from IK. The main text of paper was written by all authors.

Corresponding author

Correspondence to Adi Setyo Purnomo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizqi, H.D., Purnomo, A.S. & Kamei, I. Interaction and Effects of Bacteria Addition on Dichlorodiphenyltrichloroethane Biodegradation by Daedalea dickinsii. Curr Microbiol 78, 668–678 (2021). https://doi.org/10.1007/s00284-020-02305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02305-8

Keywords

Navigation