Skip to main content
Log in

Stellar Representation of Multipartite Antisymmetric States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Pure quantum spin-s states can be represented by 2s points on the sphere, as shown by Majorana (Nuovo Cimento 9:43–50, 1932)—the description has proven particularly useful in the study of rotational symmetries of the states, and a host of other properties, as the points rotate rigidly on the sphere when the state undergoes an SU(2) transformation in Hilbert space. We present here an extension of this representation to multipartite, totally antisymmetric (under exchange of any two qudits) states, widely known in the form of Slater determinants, and linear combinations thereof. Such states generally involve a superposition of various spin values, giving rise to a family of Majorana-like constellations, that captures their rotational transformation properties. We also point out that our results apply equally well to the characterization of degenerate linear subspaces of the Hilbert space of a single spin, of the type that appear in the Wilczek–Zee effect, and comment on potential applications to holonomic quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Majorana, E.: Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43–50 (1932)

    Article  MATH  Google Scholar 

  2. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States, 2nd edn. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  3. Chryssomalakos, C., Guzmán-González, E., Serrano-Ensástiga, E.: Geometry of spin coherent states. J. Phys. A Math. Theor. 51(16), 165202 (2018). arXiv:1710.11326

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bouchard, F., et al.: Quantum metrology at the limit with extremal Majorana constellations. Optica 4(12), 1429–1432 (2017)

    Article  ADS  Google Scholar 

  5. Eckert, K., Schliemann, J., Bruss, D., Lewenstein, M.: Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299, 88–127 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sawicki, A., Huckleberry, A., Kuś, M.: Symplectic geometry of entanglement. Commun. Math. Phys. 305, 441–468 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Schliemann, J., Cirac, J.I., Kuś, M., Lewenstein, M., Loss, D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64, 022303 (2001)

    Article  ADS  Google Scholar 

  8. Jex, I., Alber, G., Barnett, S.M., Delgado, A.: Antisymmetric multi-partite quantum states and their applications. Fortschr. Phys. 51(2–3), 172–178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 392(1802), 45–57 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. Anandan, J.: Non-adiabatic non-abelian geometric phase. Phys. Lett. A 133(45), 171–175 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase: I. General formalism. Ann. Phys. 228, 205–268 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Solinas, P., Zanardi, P., Zanghí, N.: Robustness of non-abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Oreshkov, O., Brun, T.A., Lidar, D.A.: Fault-tolerant holonomic quantum computation. Phys. Rev. Lett. 102, 070502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Golovach, V.N., Borhani, M., Loss, D.: Holonomic quantum computation with electron spins in quantum dots. Phys. Rev. A 81, 022315 (2010)

    Article  ADS  Google Scholar 

  18. Solinas, P., Sassetti, M., Truini, P., Zanghí, N.: On the stability of quantum holonomic gates. New J. Phys. 14, 093006 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shafarevich, I.R., Remizov, A.O.: Linear Algebra and Geometry. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  20. Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vol. II. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  21. Shafarevich, I.R.: Basic Algebraic Geometry 1. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  22. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  23. Jacobson, N.: Finite-Dimensional Division Algebras Over Fields. Springer, Berlin (2010)

    MATH  Google Scholar 

  24. Eremenko, A., Gabrielov, A.: Degrees of real Wronski maps. Discrete Comput. Geom. 28(3), 331–347 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schubert, H.: Kalkül der Abzählenden Geometrie. Verlag von B. G, Teubner (Leipzig) (1879)

    MATH  Google Scholar 

  26. Zimba, J.: Anticoherent spin states via the Majorana representation. Electron. J. Theor. Phys. 3(10), 143–156 (2006)

    MATH  Google Scholar 

  27. Littlewood, D.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  28. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  29. Polychronakos, A.P., Sfetsos, K.: Composition of many spins, random walks and statistics. Nucl. Phys. B 913, 664–693 (2016)

    Article  ADS  MATH  Google Scholar 

  30. Zachos, C.K.: Altering the symmetry of wave functions in quantum algebras and supersymmetry. Mod. Phys. Lett. A 07(18), 1595–1600 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Curtright, T.L., Van Kortryk, T.S., Zachos, C.K.: Spin multiplicities. Phys. Lett. A 381(5), 422–427 (1990)

    Article  ADS  MATH  Google Scholar 

  32. Gyamfi, J.A., Barone, V.: On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach. J. Phys. A Math. Theor. 51, 105202 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chryssomalakos, C., Hernández-Coronado, H.: Optimal quantum rotosensors. Phys. Rev. A 95, article No.: 052125 (2017)

  34. Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Book  Google Scholar 

  35. Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  36. Sanz, M., Braak, D., Solano, E., Egusquiza, I.L.: Entanglement classification with algebraic geometry. Journal of Physics A: Mathematical and Theoretical 50, 195303 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Schliemann, J., Loss, D., MacDonald, A.H.: Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots. Phys. Rev. B 63, 085311 (2001)

    Article  ADS  Google Scholar 

  38. Lévay, P., Vrana, P.: Three fermions with six single-particle states can be entangled in two inequivalent ways. Phys. Rev. A 78, 022329 (2008)

    Article  ADS  Google Scholar 

  39. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys Rev A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Aguilar, P., Chryssomalakos, C., Guzmán-González, E., Hanotel, L., Serrano-Ensástiga, E.: When geometric phases turn topological. J. Phys. A Math. Theor. 53(6), 065301 (2020). arXiv:1903.05022

    Article  ADS  MathSciNet  Google Scholar 

  41. Zak, F.: Tangents and Secants of Algebraic Varieties, vol. 127. AMS Translations of mathematical monographs (1993)

  42. Heydari, H.: Geometrical structure of entangled states and the secant variety. Quantum Inf. Process. 7(1), 43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Holweck, F., Luque, J.-G., Thibon, J.-Y.: Geometric descriptions of entangled states by auxiliary varieties. J. Math. Phys. 53, 102203 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge partial financial support from UNAM-DGAPA-PAPIIT projects IG100316 and IN111920. ESE would also like to acknowledge financial support from the T@T fellowship of the University of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chryssomalakos.

Additional information

Communicated by M. M. Wolf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chryssomalakos, C., Guzmán-González, E., Hanotel, L. et al. Stellar Representation of Multipartite Antisymmetric States. Commun. Math. Phys. 381, 735–764 (2021). https://doi.org/10.1007/s00220-020-03918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03918-7

Navigation