Skip to main content
Log in

Modeling Articulatory Rehearsal in an Attention-Based Model of Working Memory

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Maintenance of verbal information within human working memory occurs through two main complementary mechanisms: articulatory rehearsal and refreshing. Both are well-described in the literature but very few computational models have attempted to describe the ways they interact to maintain information. Because these interactions are difficult to apprehend without computer simulations, this paper presents a possible implementation of rehearsal within TBRS* (Time-Based Resource-Sharing Theory), a computational model operating only with refreshing and based on the TBRS verbal theory. Computer code is available at https://osf.io/taqmv/. The implementation was tested on different benchmark findings and could replicate all main effects attributed to rehearsal, while still being accountable for the same effect as TBRS*. Four aspects of our rehearsal implementation are discussed with respect to the human behavior that is intended to be described: first, the primacy and recency effects in relation to the short-term property of rehearsal and the long-term purpose of refreshing; second, the moment at which long-term memory influences working memory performance during working memory tasks in reference to the redintegration hypothesis; third, the interplay between the two maintenance mechanisms; finally, positional coding as the appropriate representation for rehearsal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It is noteworthy that some studies have questioned the benchmark nature of these effects because they are modulated by other lexical factors (e.g., [27, 37]).

  2. Benchmark #5.2.4 in [26].

  3. Benchmark #3.1 in Oberauer et al. [26].

  4.  Benchmark #5.2.1 in Oberauer et al. [26].

  5.  Benchmark #7 in Oberauer et al. [26].

  6.  Benchmark #8.1.1 in Oberauer et al. [26].

  7.  It is worth noting that LTM is here a fixed component; our model does not include any LTM learning or updating from WM.

  8. We also tested values of 0, 40, 100, 150, and 200 ms and found that values above 100 ms did not reproduce human data well, suggesting that forgotten items do not spend as much time as maintained items in rehearsing. However, forgotten items probably induce a delay in recitation, since simulations with null gaps also led to poor reproduction of human behavior.

  9. Benchmark #5.2.4 in Oberauer et al. [26].

  10. Benchmark #3.1 in Oberauer et al. [26].

  11. Benchmark 5.2.1 in Oberauer et al. [26].

  12.  Benchmark #7 in Oberauer et al. [26].

  13. Benchmark #8.1.1 in Oberauer et al. [26].

References

  1. Oberauer K, Lewandowsky S, Farrell S, Jarrold C, Greaves M. Modeling working memory: an interference model of complex span. Psychon Bull Rev. 2012;19:779–819.

    Article  Google Scholar 

  2. Barrouillet P, Portrat S, Vergauwe E, Diependaele K, Camos V. Further evidence for temporal decay in working memory. J Exp Psychol Learn Mem Cogn. 2011;37:1302–17.

    Article  Google Scholar 

  3. Camos V, Johnson M, Loaïza V, Portrat S, Souza A, Vergauwe E. What is attentional refreshing in working memory? Ann N Y Acad Sci. 2018;1424(1):19–32.

    Article  Google Scholar 

  4. Baddeley AD. Working memory. New York: Oxford University Press; 1986.

    Google Scholar 

  5. Bailey H, Dunlosky J, Kane MJ. Contribution of strategy use to performance on complex and simple span tasks. Mem Cognit. 2011;39:447–61.

    Article  Google Scholar 

  6. Barrouillet P, Bernardin S, Camos V. Time constraints and resource sharing in adults’ working memory spans. J Exp Psychol Gen. 2004;133(1):83–100.

    Article  Google Scholar 

  7. Oberauer K, Lewandowsky S. Modeling working memory: a computational implementation of the Time-Based Resource-Sharing theory. Psychon Bull Rev. 2011;18(1):10–45.

    Article  Google Scholar 

  8. Glavan JJ, Houpt JW. An integrated working memory model for time based resource sharing. Top Cogn Sci. 2019;11(1):261–76.

    Article  Google Scholar 

  9. Anderson JR. How can the human mind occur in the physical universe? New York: Oxford University Press; 2007.

    Book  Google Scholar 

  10. Lemaire B, Portrat S. A computational model of working memory integrating time-based decay and interference. Front Psychol. 2018;9:416.

    Article  Google Scholar 

  11. Barrouillet P, Bernardin S, Portrat S, Vergauwe E, Camos V. Time and cognitive load in working memory. J Exp Psychol Learn Mem Cogn. 2007;33(3):570.

    Article  Google Scholar 

  12. Lewandowsky S, Oberauer K. Rehearsal in serial recall: an unworkable solution to the nonexistent problem of decay. Psychol Rev. 2015;122(4):674–99.

    Article  Google Scholar 

  13. Conway AR, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Working memory span tasks: aa methodological review and user’s guide. Psychon Bull Rev. 2005;12(5):769–786xx.

    Article  Google Scholar 

  14. McCabe DP. The role of covert retrieval in working memory span tasks: evidence from delayed recall tests. J Mem Lang. 2008;58:480–94.

    Article  Google Scholar 

  15. Johnson MK, Reeder JA, Raye CL, Mitchell KJ. Second thoughts versus second looks: an age-related deficit in reflectively refreshing just-active information. Psychol Sci. 2002;13:64–7.

    Article  Google Scholar 

  16. Pashler H. The psychology of attention. Cambridge, MA: MIT Press; 1998.

    Google Scholar 

  17. Cowan N. An embedded-process model of working memory. In: Miyake A, Shah P, editors. Models of working memory: Mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999. p. 62–101.

    Chapter  Google Scholar 

  18. Barrouillet P, Portrat S, Camos V. On the law relating processing to storage in working memory. Psych Rev. 2011;118(2):175–92.

    Article  Google Scholar 

  19. Barrouillet P, Camos V. Working memory: Loss and reconstruction. Hove: Psychology Press; 2015.

    Google Scholar 

  20. Baddeley AD, Hitch G. Working memory. Psychol. Learn Motiv. 1974;8:47–89.

    Google Scholar 

  21. Jolicœur P, Dell’Acqua R. The demonstration of short-term consolidation. Cogn Psychol. 1998;36(2):138–202.

    Article  Google Scholar 

  22. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362(6418):342–5.

    Article  Google Scholar 

  23. Baddeley AD, Eysenck M, Anderson MC. Memory. Hove: Psychology Press; 2009.

    Google Scholar 

  24. O’Shaughnessy D. A multispeaker analysis of durations in read French paragraphs. J Acoust Soc Am. 1984;76:1664–72.

    Article  Google Scholar 

  25. Page MD, Norris D. The primacy model: a new model of immediate serial recall. Psych Rev. 1998;105(4):761–81.

    Article  Google Scholar 

  26. Oberauer K, Lewandowsky S, Awh E, Brown GDA, Conway A, Conway N, et al. Benchmarks for models of short-term and working memory. Psychol Bull. 2018;104(9):885–958.

    Article  Google Scholar 

  27. Gupta P, Lipinski J, Aktunc E. Reexamining the phonological similarity effect in immediate serial recall: the roles of type of similarity, category cuing, and item recall. Mem Cognit. 2005;33(6):1001–16.

    Article  Google Scholar 

  28. Conrad R. Acoustic confusions in immediate memory. Br J Psychol. 1964;55(1):75–84.

    Article  Google Scholar 

  29. Lewandowsky S, Farrell S. Phonological similarity in serial recall: constraints on theories of memory. J Mem Lang. 2008;58(2):429–48.

    Article  Google Scholar 

  30. Baddeley AD, Thomson N, Buchanan M. Word length and the structure of short-term memory. J Verbal Learning Verbal Behav. 1975;14(6):575–89.

    Article  Google Scholar 

  31. Bhatarah P, Ward G, Smith J, Hayes L. Examining the relationship between free recall and immediate serial recall: Similar patterns of rehearsal and similar effects of word length, presentation rate, and articulatory suppression. Mem Cognit. 2009;37(5):689–713.

    Article  Google Scholar 

  32. Murray DJ. The role of speech responses in short-term memory. Can J Exp Psychol. 1967;21:263–76.

    Article  Google Scholar 

  33. Camos V, Mora G, Oberauer K. Adaptive choice between articulatory rehearsal and attentional refreshing in verbal working memory. Mem & Cognit. 2001;39(2):231–44.

    Article  Google Scholar 

  34. Naveh-Benjamin M, Jonides J. Maintenance rehearsal: a two-component analysis. J Exp Psychol Learn Mem Cogn. 1984;10(3):369–85.

    Article  Google Scholar 

  35. Vergauwe E, Camos V, Barrouillet P. The impact of storage on processing: how is information maintained in working memory? J Exp Psychol Learn Mem Cogn. 2014;40:1072–95.

    Article  Google Scholar 

  36. Thalmann M, Souza AS, Oberauer K. Revisiting the attentional demands of rehearsal in working-memory tasks. J Mem Lang. 2019;105:1–18.

    Article  Google Scholar 

  37. Camos V, Portrat S. The impact of cognitive load on delayed recall. Psychon Bull Rev. 2015;22(4):1029–34.

    Article  Google Scholar 

  38. Jarjat G, Hoareau V, Plancher G, Hot P, Lemaire B, Portrat S. What makes working memory traces stable over time? Ann N Y Acad Sci. 2018;1424(1):149–60.

    Article  Google Scholar 

  39. Loaiza VM, McCabe DP. The influence of aging on attentional refreshing and articulatory rehearsal during working memory on later episodic memory performance. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2013;20(4):471–93.

    Article  Google Scholar 

  40. Camos V, Lagner P, Barrouillet P. Two maintenance mechanisms of verbal information in working memory. J Mem Lang. 2009;61(3):457–69.

    Article  Google Scholar 

  41. Raye CL, Johnson MK, Mitchell KJ, Reeder JA, Greene EJ. Neuroimaging a single thought: dorsolateral PFC activity associated with refreshing just-activated information. Neuroimage. 2002;15(2):447–53.

    Article  Google Scholar 

  42. Raye CL, Johnson MK, Mitchell KJ, Greene EJ, Johnson MR. Refreshing: a minimal executive function. Cortex. 2007;43(1):135–45.

    Article  Google Scholar 

  43. Gruber O, von Cramon DY. The functional neuroanatomy of human working memory revisited: evidence from 3-T fMRI studies using classical domain-specific interference tasks. Neuroimage. 2003;19(3):797–809.

    Article  Google Scholar 

  44. Trost S, Gruber O. Evidence for a double dissociation of articulatory rehearsal and non-articulatory maintenance of phonological information in human verbal working memory. Neuropsychobiology. 2012;65(3):133–40.

    Article  Google Scholar 

  45. Gaillard V, Barrouillet P, Jarrold C, Camos V. Developmental differences in working memory: where do they come from? J Exp Child Psychol. 2011;110(3):469–79.

    Article  Google Scholar 

  46. Baumans C, Adam S, Seron X. Effect of cognitive load on working memory forgetting in aging. Exp Psychol. 2012;59(6):311–21.

    Article  Google Scholar 

  47. Lemaire B, Pageot A, Plancher G, Portrat S. What is the time course of working memory attentional refreshing? Psychon Bull Rev. 2018;25(1):370–85.

    Article  Google Scholar 

  48. Camos V, Barrouillet P. Attentional and non-attentional systems in the maintenance of verbal information in working memory: the executive and phonological loops. Front Hum Neurosci. 2014;8:900.

    Article  Google Scholar 

  49. Jarrold C, Tam H, Baddeley AD, Harvey CE. How does processing affect storage in working memory tasks? Evidence for both domain-general and domain-specific effects. J Exp Psychol Learn Mem Cogn. 2011;37:688–705.

    Article  Google Scholar 

  50. Vergauwe E, Cowan N. Attending to items in working memory: evidence that refreshing and memory search are closely related. Psychon Bull Rev. 2015;22:1001–6.

    Article  Google Scholar 

  51. Lucidi A, Langerock N, Hoareau V, Lemaire B, Camos V, Barrouillet P. Working memory still needs verbal rehearsal. Mem Cognit. 2016;44(2):197–206.

    Article  Google Scholar 

  52. Glanzer M, Cunitz AR. Two storage mechanisms in free recall. J Verbal Learning Verbal Behav. 1966;5(4):351–60.

    Article  Google Scholar 

  53. Glanzer M. Storage mechanisms in recall. Psychology of learning and motivation. 1972;5:129–93.

    Article  Google Scholar 

  54. Craik FI. The fate of primary memory items in free recall. J Verbal Learning Verbal Behav. 1970;9(2):143–8.

    Article  Google Scholar 

  55. Loaiza VM, Camos V. The role of semantic representations in verbal working memory. J Exp Psychol Learn Mem Cogn. 2018;44(6):863–81.

    Article  Google Scholar 

  56. Rose NS, Craik FIM. A processing approach to the working memory/long-term memory distinction: evidence from the levels-of-processing span task. J Exp Psychol Learn Mem Cogn. 2012;38(4):1019–29.

    Article  Google Scholar 

  57. Hulme C, Roodenrys S, Brown G, Mercer R. The role of long-term memory mechanisms in memory span. Br J Psychol. 1995;86:527–36.

    Article  Google Scholar 

  58. Schweickert R. A multinomial processing tree model for degradation and redintegration in immediate recall. Mem Cognit. 1993;21(2):168–75.

    Article  Google Scholar 

  59. Kowialiewski B, Majerus S. Testing the redintegration hypothesis by a single probe recognition paradigm. Memory. 2018;26(9):1256–64.

    Article  Google Scholar 

  60. Burgess N, Hitch GJ. Memory for serial order: a network model of the phonological loop and its timing. Psych Rev. 1999;106(3):551–81.

    Article  Google Scholar 

  61. Burgess N, Hitch GJ. A revised model of short-term memory and long-term learning of verbal sequences. J Mem Lang. 2006;55(4):627–52.

    Article  Google Scholar 

  62. Botvinick M, Plaut DC. Short-term memory for serial order: a recurrent neural network model. Psych Rev. 2006;113:201–33.

    Article  Google Scholar 

  63. Portrat S, Lemaire B. Is attentional refreshing in working memory sequential? A computational modeling approach Cognit Comput. 2015;7(3):333–45.

    Article  Google Scholar 

  64. Portrat S, Guida A, Phénix T, Lemaire B. Promoting the experimental dialogue between working memory and chunking: behavioral data and simulation. Mem Cognit. 2016;44(3):420–34.

    Article  Google Scholar 

  65. Vergauwe E, Ricker TJ, Langerock N, Cowan N. What do people typically do between list items? The nature of attention-based mnemonic activities depends on task context. J Exp Psychol Learn Mem Cogn. 2019;45(5):779–94.

    Article  Google Scholar 

  66. Ward G, Tan L. Control processes in short-term storage: retrieval strategies in immediate recall depend upon the number of words to be recalled. Mem Cognit. 2019;47(4):658–82.

    Article  Google Scholar 

  67. Lewandowsky S, Murdock BB. Memory for serial order Psych Rev. 1989;96:25–57.

    Google Scholar 

  68. Henry LA, Millar S. Why does memory span improve with age? A review of the evidence for two current hypotheses, Eur J Cogn Psychol. 1993;5(3):241–87.

    Article  Google Scholar 

  69. Souza AS, Oberauer K. Does articulatory rehearsal help immediate serial recall? Cogn Psychol. 2018;107:1–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the French National Research Agency (ANR) (ANR-17-CE28-0013-03) under the CHUNKED project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Portrat.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, B., Heuer, C. & Portrat, S. Modeling Articulatory Rehearsal in an Attention-Based Model of Working Memory. Cogn Comput 13, 49–68 (2021). https://doi.org/10.1007/s12559-020-09791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-020-09791-9

Keywords

Navigation