Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T00:16:34.570Z Has data issue: false hasContentIssue false

Naproxen/Layered Double Hydroxide Composites for Tissue-Engineering Applications: Physicochemical Characterization and Biological Evaluation

Published online by Cambridge University Press:  01 January 2024

Marcela P. Bernardo*
Affiliation:
National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation, Brazilian Agricultural Research Corporation, São Carlos, São Paulo, Brazil
Bruna C.S. Rodrigues
Affiliation:
National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation, Brazilian Agricultural Research Corporation, São Carlos, São Paulo, Brazil
Tamires D. de Oliveira
Affiliation:
Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Adriana P.M. Guedes
Affiliation:
Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Alzir A. Batista
Affiliation:
Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
Luiz H.C. Mattoso
Affiliation:
National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation, Brazilian Agricultural Research Corporation, São Carlos, São Paulo, Brazil
*
*E-mail address of corresponding author: marcelapiassib@gmail.com

Abstract

Injured bone tissues can be healed with bone grafts, but this procedure may cause intense pain to the patient. A slow and localized delivery of nonsteroidal anti-inflammatory drugs (NSAIDs) could help to reduce the pain without affecting bone regeneration. The objective of the present study was to use [Mg-Al]-layered double hydroxide (LDH) as a matrix for controlled release of sodium naproxen (NAP). This system could be applied in biomaterial formulations (such as bone grafts) to achieve a local delivery of naproxen. [Mg-Al]-LDH successfully incorporated up to 80% (w/w) of naproxen by the structural reconstruction route, with the [Mg-Al]-LDH interlayer space increasing by 0.55 nm, corresponding to the drug molecule size. The evaluation of the naproxen release kinetics showed that 40% of the drug was delivered over 48 h in aqueous medium (pH 7.4 ± 0.1), indicating the potential of [Mg-Al]-LDH/NAP for local release of naproxen at adequate concentrations. Kinetic modeling showed that the naproxen release process was closely related to the Higuchi model, which considers the drug release as a diffusional process based on Fick’s law. The chemical stability of NAP after the release tests was verified by 1H NMR. The [Mg-Al]-LDH/NAP also exhibited low cytotoxicity toward fibroblast cells (L929 cell line), without modifications in their morphology and adhesion capacity. These results describe a suitable approach for preparing efficient systems for local delivery of nonsteroidal anti-inflammatory drugs for biomedical applications.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrogi, V., Fardella, G., Grandolini, G., & Perioli, L. (2001). Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents – I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 2332. https://doi.org/10.1016/S0378-5173(01)00629-9.CrossRefGoogle ScholarPubMed
Arco, M. del, Rrez, S. G., Martι, C., Rives, V., & Rocha, J. (2004). Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of Solid State Chemistry, 177, 39543962. https://doi.org/10.1016/j.jssc.2004.08.006CrossRefGoogle Scholar
Berber, M. R., Minagawa, K., & Katoh, M. (2008). Nanocomposites of 2-arylpropionic acid drugs based on Mg – Al layered double hydroxide for dissolution. European Journal of Pharmaceutical Sciences, 5, 354360. https://doi.org/10.1016/j.ejps.2008.08.006.CrossRefGoogle Scholar
Bernardo, M. P., Moreira, F. K. V., Colnago, L. A., & Ribeiro, C. (2016). Physico-chemical assessment of [Mg-Al-PO4]-LDHs obtained by structural reconstruction in high concentration of phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 5362. https://doi.org/10.1016/j.colsurfa.2016.02.021.CrossRefGoogle Scholar
Bernardo, M. P., Moreira, F. K. V., & Ribeiro, C. (2017). Synthesis and characterization of eco-friendly Ca-Al-LDH loaded with phosphate for agricultural applications. Applied Clay Science, 137, 143150. https://doi.org/10.1016/j.clay.2016.12.022.CrossRefGoogle Scholar
Bernardo, M. P., & Ribeiro, C. (2018). [Mg-Al]-LDH and [Zn-Al]-LDH as matrices for removal of high loadings of phosphate. Materials Research, 21, 19. https://doi.org/10.1590/1980-5373-MR-2017-1001.CrossRefGoogle Scholar
Brogden, R. N., Finder, R. M., Sawyer, P. R., Speight, T. M., & Avery, G. S. (1975). Naproxen: A review of its pharmacological properties and therapeutic efficacy and use. Drugs, 9, 326363. https://doi.org/10.2165/00003495-197509050-00002.CrossRefGoogle ScholarPubMed
Carriazo, D., del Arco, M., Martín, C., Ramos, C., & Rives, V. (2010). Influence of the inorganic matrix nature on the sustained release of naproxen. Microporous and Mesoporous Materials, 130, 229238. https://doi.org/10.1016/j.micromeso.2009.11.014CrossRefGoogle Scholar
Cavalla, F., Biguetti, C. C., Garlet, T. P., Trombone, A. P. F., & Garlet, G. P. (2018). Inflammatory pathways of bone resorption in periodontitis. Pp. 5986 in: Pathogenesis of Periodontal Diseases (Bostanci, G. N. B. N., editor). https://doi.org/10.1007/978-3-319-53737-5CrossRefGoogle Scholar
Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173301. https://doi.org/10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Choy, J., Kwak, S., Park, J., & May, R. V. (1999). intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 13991400.CrossRefGoogle Scholar
Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122132. https://doi.org/10.1016/j.clay.2006.07.007.CrossRefGoogle Scholar
Costa, F., Saphiannikova, M., Wagenknecht, U., & Heinrich, G. (2008). Layered double hydroxide based polymer nanocomposites. Pp. 101168 in: Wax Crystal Control · Nanocomposites · Stimuli-Responsive Polymers. Advances in Polymer Science, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2007_123Google Scholar
Dahners, L. E., & Mullis, B. H. (2004). Effects of nonsteroidal anti-inflammatory drugs on bone formation and soft-tissue healing. The Journal of the American Academy of Orthopaedic Surgeons, 12, 139143. https://doi.org/10.5435/00124635-200405000-00001.CrossRefGoogle Scholar
Davies, N. M., Røseth, A. G., Appleyard, C. B., McKnight, W., Del Soldato, P., Calignano, A., et al. (1997). NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. Alimentary Pharmacology Therapeutics, 11, 6979.CrossRefGoogle ScholarPubMed
Del Arco, M., Cebadera, E., Gutiérrez, S., Martín, C., Montero, M. J., Rives, V., Rocha, J., & Sevilla, M. A. (2004). Mg,Al layered double hydroxides with intercalated indomethacin: Synthesis, characterization, and pharmacological study. Journal of Pharmaceutical Sciences, 93, 16491658. https://doi.org/10.1002/jps.20054.CrossRefGoogle ScholarPubMed
Djaballah, R., Bentouami, A., Benhamou, A., Boury, B., & Elandaloussi, E. H. (2018). The use of Zn-Ti layered double hydroxide interlayer spacing property for low-loading drug and low-dose therapy. Synthesis, characterization and release kinetics study. Journal of Alloys and Compounds, 739, 559567. https://doi.org/10.1016/j.jallcom.2017.12.299.CrossRefGoogle Scholar
Dresselhaus, M. S., editor (1986). Intercalation in Layered Materials, 1st edition. Springer, Berlin. https://doi.org/10.1007/978-1-4757-5556-5CrossRefGoogle Scholar
Fayyazbakhsh, F., Solati-Hashjin, M., Keshtkar, A., Shokrgozar, M. A., Dehghan, M. M., & Larijani, B. (2017). Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 158, 697708. https://doi.org/10.1016/j.colsurfb.2017.07.004.CrossRefGoogle ScholarPubMed
Hasan, Z., Jeon, J., & Jhung, S. H. (2012). Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. Journal of Hazardous Materials, 209–210, 151157. https://doi.org/10.1016/j.jhazmat.2012.01.005.CrossRefGoogle ScholarPubMed
Hines, D., Solin, S., Costantino, U., & Nocchetti, M. (2000). Physical properties offixed-charge layer double hydroxides. Physical Review B - Condensed Matter and Materials Physics, 61, 1134811358. https://doi.org/10.1103/PhysRevB.61.11348.CrossRefGoogle Scholar
Hou, W., & Jin, Z. (2007). Synthesis and characterization of Naproxen intercalated Zn–Al layered double hydroxides. Colloid and Polymer Science, 285, 14491454. https://doi.org/10.1007/s00396-007-1704-y.CrossRefGoogle Scholar
Huang, W., Zhang, H., & Pan, D. (2015). Study on the release behavior and mechanism by monitoring the morphology changes of the largesized drug-LDH nanohybrids. AIChE Journal, 6, 857866. https://doi.org/10.1002/aic.12379.Google Scholar
Hussein, A. M. A., Burra, K. G., Bassioni, G., Hammouda, R. M., & Gupta, A. K. (2019). Production of CO from CO2 over mixed-metal oxides derived from layered. Applied Energy, 235(November 2018), 11831191. https://doi.org/10.1016/j.apenergy.2018.11.040.CrossRefGoogle Scholar
Khan, A. I., Lei, L., & Norquist, A. J. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2342–2343. https://doi.org/10.1039/b106465gCrossRefGoogle Scholar
Kriven, W. M., Kwak, S., Wallig, M., & Choy, J. (2004). Bioresorbable nanoceramics for gene and drug. MRS Bulletin, 2016, 3337. https://doi.org/10.1557/mrs2004.14.CrossRefGoogle Scholar
Li, B., He, J., Evans, D. G., & Duan, X. (2004). Inorganic layered double hydroxides as a drug delivery system – Intercalation and in vitro release of fenbufen. Applied Clay Science, 27, 199207. https://doi.org/10.1016/j.clay.2004.07.002.CrossRefGoogle Scholar
Li, F., Jin, L., Han, J., Wei, M., & Li, C. (2009). Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite. Industrial and Engineering Chemistry Research, 48, 55905597. https://doi.org/10.1021/ie900043r.CrossRefGoogle Scholar
Lichtenstein, D. R., Syngal, S., & Wolfe, M. (1995). Nonsteroidal antiinflammatory drugs and the gastrointestinal tract: The double-edged sword. Arthritis & Rheumatism, 38, 518.CrossRefGoogle ScholarPubMed
Lobo, M. S., & Costa, P. (2001). Modeling and comparison of dissolution profiles'. European Journal of Pharmaceutical Sciences, 13, 123133.Google Scholar
Menagen, B., Pedahzur, R., & Avnir, D. (2017). Sustained release from a metal – Analgesics entrapped within biocidal silver. Scientific Reports, 7, 111. https://doi.org/10.1038/s41598-017-03195-w.CrossRefGoogle ScholarPubMed
Mishra, G., Dash, B., & Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153, 172186. https://doi.org/10.1016/j.clay.2017.12.021.CrossRefGoogle Scholar
Mobbs, R. J., Coughlan, M., Thompson, R., Sutterlin, C. E., & Phan, K. (2017). The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: Case report. Journal of Neurosurgery: Spine, 26, 513518. https://doi.org/10.3171/2016.9.SPINE16371.Google Scholar
Mondal, S., Dasgupta, S., & Maji, K. (2016). MgAl- Layered double hydroxide nanoparticles for controlled release of salicylate. Materials Science and Engineering C, 68, 557564. https://doi.org/10.1016/j.msec.2016.06.029.CrossRefGoogle ScholarPubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 5563. https://doi.org/10.1016/0022-1759(83)90303-4.CrossRefGoogle ScholarPubMed
Reichle, W. T. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135141. https://doi.org/10.1016/0167-2738(86)90067-6.CrossRefGoogle Scholar
Rhaese, S., Von Briesen, H., Rubsamen-waigmann, H., & Langer, K. (2003). H uman serum albumin – polyethylenimine nanoparticles for gene delivery. Journal of Controlled Release, 92, 199208.CrossRefGoogle Scholar
Richy, F., Bruyere, O., Ethgen, O., Rabenda, V., Bouvenot, G., Audran, M., & Reginster, J. Y. (2004). Time dependent risk of gastrointestinal complications induced by non-steroidal anti-inflammatory drug use: A consensus statement using a meta-analytic approach. Annals of the Rheumatic Diseases, 63(7), 759766. https://doi.org/10.1136/ard.2003.015925.CrossRefGoogle ScholarPubMed
Rives, V., Del Arco, M., & Martín, C. (2013). Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. Journal of Controlled Release, 169, 2839. https://doi.org/10.1016/j.jconrel.2013.03.034CrossRefGoogle ScholarPubMed
Rojas, R., Jimenez-Kairuz, A. F., Manzo, R. H., & Giacomelli, C. E. (2014). Release kinetics from LDH-drug hybrids: Effect of layers stacking and drug solubility and polarity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 463, 3743. https://doi.org/10.1016/j.colsurfa.2014.09.031.CrossRefGoogle Scholar
Rojas, R., Linck, Y. G., Cuffini, S. L., Monti, G. A., & Giacomelli, C. E. (2015). Structural and physicochemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Applied Clay Science, 109–110, 119126. https://doi.org/10.1016/j.clay.2015.02.030.CrossRefGoogle Scholar
Souza, J. M. F. d. S., de Aquino, A. L. F., & Basto, A. O. (2018). Treatment of heterotopic ossification of the hip with use of a plaster cast: case report. Revista Brasileira de Ortopedia, 53(6), 805808. https://doi.org/10.1016/j.rbo.2017.05.012.CrossRefGoogle ScholarPubMed
Tang, L., & Eaton, J. W. (1995). Inflammatory responses to biomaterials. American Journal of Clinical Pathology, 4, 466471. https://doi.org/10.1093/ajcp/103.4.466.CrossRefGoogle Scholar
Vielpeau, C., & Joubert, J. (1999). Naproxen in the prevention of heterotopic ossification after total hip replacement. Clinical Orthopaedics and Related Research, 369, 279288.CrossRefGoogle Scholar
Wei, M., Shi, S., Wang, J., Li, Y., & Duan, X. (2004). Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. Journal of Solid State Chemistry, 177, 25342541. https://doi.org/10.1016/j.jssc.2004.03.041.CrossRefGoogle Scholar
Xu, Z. P., Walker, T. L., Liu, K., Cooper, H. M., Lu, G. Q. M., & Bartlett, P. F. (2007). Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. International Journal of Nanomedicine, 2, 163174. https://doi.org/10.2147/IJN.S.Google ScholarPubMed
Yang, K., Yan, L. G., Yang, Y. M., Yu, S. J., Shan, R. R., Yu, H. Q., & Du, B. (2014). Adsorptive removal of phosphate by Mg-Al and ZnAl layered double hydroxides: Kinetics, isotherms and mechanisms. Separation and Purification Technology, 124, 3642. https://doi.org/10.1016/j.seppur.2013.12.042.CrossRefGoogle Scholar
Supplementary material: File

Bernardo et al. supplementary material
Download undefined(File)
File 482.3 KB