Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T20:14:03.596Z Has data issue: false hasContentIssue false

Organo-Modification of Montmorillonite

Published online by Cambridge University Press:  01 January 2024

Yi Xuan Guo
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals (QYIM), Youhua Township, 242804, Qingyang County, China
Jia Hui Liu
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals (QYIM), Youhua Township, 242804, Qingyang County, China
Will P. Gates
Affiliation:
Institute for Frontier Materials, Deakin University Melbourne-Burwood, 3125, Burwood, Victoria, Australia
Chun Hui Zhou*
Affiliation:
Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China Qing Yang Institute for Industrial Minerals (QYIM), Youhua Township, 242804, Qingyang County, China
*
*E-mail address of corresponding author: smectman@126.comclay@zjut.edu.cn

Abstract

Modification of the surfaces of montmorillonite (Mnt) by organic molecules is an effective method for improving their affinity toward non-aqueous substances, and has resulted in extensive industrial applications as rheological control agents, drilling fluids, and other functional materials used in applications ranging from environmental remediation to coatings. The present study reviewed recent progress in organo-modification of Mnt, and provides state-of-the-art insights into proposed modification mechanisms and the peculiar functionalities of the resulting organo-montmorillonite (OMnt). Several routes have been employed to modify Mnt, including ion exchange with organic ions, surface adsorption, and grafting of organics. Commonly used organic modifiers include cationic, anionic, zwitterionic, non-ionic, and polymeric species. Organo-modification is driven by multiple interactions: van der Waals forces, cation exchange, electrostatic interaction, hydrogen bonds, and ion–dipole interaction. OMnt, in general, exhibits synergistic and/or antagonistic effects when used in oil-based drilling fluids, environmental remediation, or layered silicate/polymer nanocomposites. The detailed mechanisms of non-ionic and zwitterionic modification of Mnt remain unclear. This literature survey suggests that future work should emphasize deeper understanding of interactions between the Mnt and the organic modifiers, and meanwhile expand the applications of OMnt into catalysis, drug carriers, and the biomedical field.

Graphical abstract

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acisli, O., Karaca, S., & Gurses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (mt) from aqueous solutions. Applied Clay Science, 142, 9099.CrossRefGoogle Scholar
Ahmed, A., Chaker, Y., Belarbi, E. H., Abbas, O., Chotard, J. N., Abassi, H. B., Van Nhien, A. N., El Hadri, M., & Bresson, S. (2018). XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. Journal of Molecular Structure, 1173, 653664.CrossRefGoogle Scholar
Akbulut, S., Kurt, Z. N., & Arasan, S. (2012). Surfactant modified clays' consistency limits and contact angles. Earth Sciences Research Journal, 16, 95101.Google Scholar
Akbulut, S., Kurt, Z. N., Arasan, S., & Pekdemir, Y. (2013). Geotechnical properties of some organoclays. Sadhana, 38, 317329.Google Scholar
Al-Mulla, J., Al-Mosawy, E. A., Abd-Almutalib, M. G., & Mohamad, M. J. (2017). New biopolymer nanocomposites-based epoxidized palm oil/polybutylene succinate modified clay: Preparation and characterization. Rendiconti Lincei, 28, 721730.CrossRefGoogle Scholar
Ambre, A., Katti, K. S., & Katti, D. R. (2011). In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Materials Science and Engineering C, 31, 10171029.CrossRefGoogle Scholar
Bagherifam, S., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W. Y., Ma, J. F., Hong, S. Q., Cannon, F. S., & Wang, Y. J. (2014). Highly selective removal of nitrate and perchlorate by organoclay. Applied Clay Science, 95, 126132.CrossRefGoogle Scholar
Bajda, T., & Klapyta, Z. (2013). Adsorption of chromate from aqueous solutions by hdtma-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169173.CrossRefGoogle Scholar
Balme, S., Guegan, R., Janot, J. M., Jaber, M., Lepoitevin, M., Dejardin, P., Bourrat, X., & Motelica-Heino, M. (2013). Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter, 9, 31883196.CrossRefGoogle Scholar
Bate, B., & Burns, S. E. (2010). Effect of total organic carbon content and structure on the electrokinetic behavior of organoclay suspensions. Journal of Colloid and Interface Science, 343, 5864.CrossRefGoogle ScholarPubMed
Bee, S. L., Abdullah, M. A. A., Bee, S. T., Sin, L. T., & Rahmat, A. R. (2018). Polymer nanocomposites based on silylated-montmorillonite: A review. Progress in Polymer Science, 85, 5782.CrossRefGoogle Scholar
Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 4651.CrossRefGoogle Scholar
Borrego-Sánchez, A., Gómez-Pantoja, E., Morillo, E., Undabeytia, T., & Sainz-Díaz, C. I. (2018). Adsorption of the tallow amine ethoxylate surfactant Ethomeen t/15 on montmorillonite. Applied Clay Science, 161, 533543.CrossRefGoogle Scholar
Brantseva, T., Antonov, S., Kostyuk, A., Ignatenko, V., Smirnova, N., Korolev, Y., Tereshin, A., & Ilyin, S. (2016). Rheological and adhesive properties of PIB-based pressure-sensitive adhesives with montmorillonite-type nanofillers. European Polymer Journal, 76, 228244.CrossRefGoogle Scholar
Brigatti, M.F., Galan, E., & Theng, B.K.G. (2006). Structures and mineralogy of clay minerals. Pp. 1986 in: Handbook of Clay Science (Bergaya, F. & Lagaly, G., editors). Developments in Clay Science, 1, Elsevier, Amsterdam.CrossRefGoogle Scholar
Bruce, A. N., Lieber, D., Hua, I., & Howarter, J. A. (2014). Rational interface design of epoxy–organoclay nanocomposites: Role of structure-property relationship for silane modifiers. Journal of Colloid and Interface Science, 419, 7378.CrossRefGoogle ScholarPubMed
Bujdak, J. (2015). Effect of layer charge on the formation of polymer/layered silicate nanocomposites: Intercalation of polystyrene. Journal of Physical Chemistry C, 119, 1201612022.CrossRefGoogle Scholar
Cao, H. L., Wang, P., & Li, Y. (2010). Preparation of poly(lactic acid)/ Na-montmorillonite nanocomposite by microwave-assisted in-situ melt polycondensation. Macromolecular Research, 18, 11291132.CrossRefGoogle Scholar
Cao, X. S., Wang, J., Liu, M., Chen, Y., Cao, Y., & Yu, X. L. (2015). Chitosan-collagen organomontmorillonite scaffold for bone tissue engineering. Frontiers of Materials Science, 9, 405412.CrossRefGoogle Scholar
Cardoso, M. A. F., Ferreira, H. S., da Silva, I. A., Ferreira, H. C., & Neves, G. D. (2012). Development of organoclays for use in oilbased drilling fluids. Materials Science Forum, 727–728, 15571562.CrossRefGoogle Scholar
Chen, D. M., Chen, J., Luan, X. L., Ji, H. P., & Xia, Z. G. (2011). Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 11501158.CrossRefGoogle Scholar
Daitx, T. S., Carli, L. N., Crespo, J. S., & Mauler, R. S. (2015). Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of phbv. Applied Clay Science, 115, 157164.CrossRefGoogle Scholar
Demir, B., Seleci, M., Ag, D., Cevik, S., & Timur, S. (2013). Amine intercalated clay surfaces for microbial cell immobilization and biosensing applications. RSC Advances, 3(20), 75137519.CrossRefGoogle Scholar
Demir, F., Demir, B., Yalcinkaya, E. E., Cevik, S., Demirkol, D. O., Anik, U., & Timur, S. (2014). Amino acid intercalated montmorillonite: electrochemical biosensing applications. RSC Advances, 4, 5010750113.CrossRefGoogle Scholar
Deng, Y., Dixon, J. B., White, G. N., Loeppert, R. H., & Juo, A. S. R. (2006). Bonding between polyacrylamide and smectite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 8291.CrossRefGoogle Scholar
dos Santos, E.C., Gates, W. P., Michels, L., Juranyi, F., Mikkelsen, A., da Silva, G. J., Fossum, J. O., & Bodallo, H. N. (2018). The pH influence on the intercalation of the bioactive agent ciprofloxacin in fluorohectorite. Applied Clay Science, 166, 288298.CrossRefGoogle Scholar
El Adraa, K., Georgelin, T., Lambert, J. F., Jaber, F., Tielens, F., & Jaber, M. (2017). Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study. Chemical Engineering Journal, 314, 406417.CrossRefGoogle Scholar
Eyama, T., Yogo, Y., Fujimura, T., Tsukamoto, T., Masui, D., Shimada, T., Tachibana, H., Inoue, H., & Takagi, S. (2012). Adsorption and stacking behaviour of zwitterionic porphyrin on the clay surface. Clay Minerals, 47, 243250.CrossRefGoogle Scholar
Ezquerro, C.S., Ric, G.I., Miñana, C.C., & Bermejo, J.S. (2015). Characterization of montmorillonites modified with organic divalent phosphonium cations. Applied Clay Science, 111, 19.CrossRefGoogle Scholar
Fan, J. T., Zhu, H., Li, R., & Chen, N. J. (2015). Montmorillonite modified by cationic and nonionic surfactants as high-performance fluid-loss-control additive in oil-based drilling fluids. Journal of Dispersion Science and Technology, 36, 569576.CrossRefGoogle Scholar
Fehervari, A., Gates, W. P., Patti, A. F., Turney, T. W., Bouazza, A., & Rowe, R. K. (2016a). Cyclic organic carbonate modification of sodium bentonite for enhanced containment of hyper saline leachates. Geotextiles and Geomembranes, 134, 212.Google Scholar
Fehervari, A., Gates, W. P., Patti, A. F., Turney, T. W., Bouazza, A., & Rowe, R. K. (2016b). Potential hydraulic barrier performance of cyclic organic carbonate modified bentonite complexes against hyper-salinity. Geotextiles and Geomembranes, 44, 748760.CrossRefGoogle Scholar
Flores, F. M., Undabeytia, T., Morillo, E., & Torres Sanchez, R. M. (2017). Technological applications of organo-montmorillonites in the removal of pyrimethanil from water: Adsorption/desorption and flocculation studies. Environmental Science Pollution Research International, 24, 1446314476.CrossRefGoogle ScholarPubMed
Fu, M., Zhang, Z., Wu, L., Zhuang, G., Zhang, S., Yuan, J., & Liao, L. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132–133, 694701.CrossRefGoogle Scholar
Gardi, I., & Mishael, Y. G. (2018). Designing a regenerable stimuliresponsive grafted polymer-clay sorbent for filtration of water pollutants. Science and Technology of Advanced Materials, 19, 588598.CrossRefGoogle ScholarPubMed
Ghafar, H. H. A., Radwan, E. K., & El-Wakee, S. T. (2020). Removal of hazardous contaminants from water by natural and zwitterionic surfactant-modified clay. ACS Omega, 5, 68346845.CrossRefGoogle ScholarPubMed
Gates, W. P., Shaheen, U., Turney, T. W., & Patti, A. F. (2016). Cyclic carbonate – sodium smectite intercalates. Applied Clay Science, 124–125, 94101.CrossRefGoogle Scholar
Gu, Z., Gao, M., Luo, Z., Lu, L., Ye, Y., & Liu, Y. (2014). Bispyridinium dibromides modified organo-bentonite for the removal of aniline from wastewater: A positive role of π–π polar interaction. Applied Surface Science, 290, 107115.CrossRefGoogle Scholar
Gu, Z., Gao, M., Lu, L., Liu, Y., & Yang, S. (2015). Montmorillonite functionalized with zwitterionic surfactant as a highly efficient adsorbent for herbicides. Industrial & Engineering Chemistry Research, 54, 49474955.CrossRefGoogle Scholar
Guégan, R., Giovanela, M., Warmont, F., & Motelica-Heino, M. (2015). Nonionic organoclay: A ‘Swiss army knife’ for the adsorption of organic micro-pollutants? Journal of Colloid and Interface Science, 437, 7179.CrossRefGoogle ScholarPubMed
Guégan, R., Oliveira, T. D., Gleuher, J. L., & Sugahara, Y. (2019). Tuning down the environmental interests of organoclays for emerging pollutants: pharmaceuticals in presence of electrolytes. Chemosphere, 239, 124730.CrossRefGoogle ScholarPubMed
Hassani, A., Khataee, A., Karaca, S., & Shirzad-Siboni, M. (2015). Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: Kinetic and isotherm studies. Environmental Technology, 36, 31253135.CrossRefGoogle ScholarPubMed
He, H. P., Ma, Y. H., Zhu, J. X., Yuan, P., & Qing, Y. H. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 6772.CrossRefGoogle Scholar
Hojiyev, R., Ulcay, Y., & Celik, M. S. (2017a). Development ofa claypolymer compatibility approach for nanocomposite applications. Applied Clay Science, 146, 548556.CrossRefGoogle Scholar
Hojiyev, R., Ulcay, Y., Celik, M. S., & Carty, W. M. (2017b). Effect of CEC coverage of hexadecyltributylphosphonium modified montmorillonite on polymer compatibility. Applied Clay Science, 141, 204211.CrossRefGoogle Scholar
Hou, Y. K., Wu, P. X., Huang, Z. J., Ruan, B., Liu, P. Y., & Zhu, N. W. (2014). Successful intercalation of DNA into CTAB-modified clay minerals for gene protection. Journal of Materials Science, 49, 72737281.CrossRefGoogle Scholar
Hu, X., Tian, S., Zhan, S., & Zhu, J. (2017). Adsorption of switchable surfactant mixed with common nonionic surfactant on montmorillonite: Mechanisms and arrangement models. Applied Clay Science, 146, 140146.CrossRefGoogle Scholar
Jovic-Jovicic, N., Milutinovic-Nikolic, A., Bankovic, P., Mojovic, Z., Zunic, M., Grzetic, I., & Jovanovic, D. (2010). Organo-inorganic bentonite for simultaneous adsorption of acid orange 10 and lead ions. Applied Clay Science, 47, 452456.CrossRefGoogle Scholar
Kessenich, B. L., Pokhrel, N., Kibue, J. K., Flury, M., & Yoreo, J. J. D. (2020). Negatively charged lipids exhibit negligible effects on the water repellency of montmorillonite films. ACS Omega, 2020(5), 1215412161.CrossRefGoogle Scholar
Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., Tomita, Y., Maeda, Y., & Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54, 202205.CrossRefGoogle Scholar
Lagaly, G., Ogawa, M., & Dékány, I. (2013). Clay mineral organic interactions. Pp. 309377 in: Handbook of Clay Science (Bergaya, F. & Lagaly, G., editors) Developments in Clay Science, 5. Elsevier, Amsterdam.Google Scholar
Lazorenko, G., Kasprzhitskii, A., & Yavna, V. (2018). Synthesis and structural characterization of betaine- and imidazoline-based organoclays. Chemical Physics Letters, 692, 264270.CrossRefGoogle Scholar
Liang, J. J., Wei, J. C., Lee, Y. L., Hsu, S. H., Lin, J. J., & Lin, Y. L. (2014). Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. Journal of Virology, 88, 42184228.CrossRefGoogle ScholarPubMed
Liu, Y., Gates, W. P., & Bouazza, A. (2013). Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotextiles and Geomembranes, 36, 7180.CrossRefGoogle Scholar
Liu, C. M., Wu, P. X., Zhu, Y. J., & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, 10261032.CrossRefGoogle ScholarPubMed
Luo, W., Ouyang, J., Antwi, P., Wu, M., Huang, Z., & Qin, W. (2019). Microwave/ultrasound-assisted mo4dification of montmorillonite by conventional and gemini alkyl quaternary ammonium salts for adsorption of chromate and phenol: Structure-function relationship. The Science of the Total Environment, 655, 11041112.CrossRefGoogle ScholarPubMed
Ma, L. Y., Zhu, J. X., He, H. P., Xi, Y. F., Zhu, R. L., Tao, Q., & Liu, D. (2015). Thermal analysis evidence for the location of zwitterionic surfactant on clay minerals. Applied Clay Science, 112, 6267.CrossRefGoogle Scholar
Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q., & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, 880888.CrossRefGoogle Scholar
Martinez-Costa, J. I., & Leyva-Ramos, R. (2017). Effect of surfactant loading and type upon the sorption capacity of organobentonite towards pyrogallol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 676685.CrossRefGoogle Scholar
Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., Griffiths, P., Manfredi, A., Ranucci, E., & Ferruti, P. (2017). Rgd-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 21642175.CrossRefGoogle ScholarPubMed
Michot, L. J., Bihannic, I., Thomas, F., Lartiges, B. S., Waldvogel, Y. C. C., Thieme, J., Funari, S. S., & Levitz, P. (2013). Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir, 29, 35003510.CrossRefGoogle Scholar
Naranjo, P. M., Sham, E. L., & Torres, E. M. F. (2017). Characterization of hexadecyltrimethylammonium-organoclay and its individual components by thermal techniques. Bulletin of Materials Science, 40, 753758.CrossRefGoogle Scholar
Ouellet-Plamondon, C. M., Stasiak, J., & Al-Tabbaa, A. (2014). The effect of cationic, non-ionic and amphiphilic surfactants on the intercalation of bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 330337.CrossRefGoogle Scholar
Papatzani, S., & Paine, K. (2017). Inorganic and organomodified nanomontmorillonite dispersions for use as supplementary cementitious materials – a novel theory based on nanostructural studies. Nanocomposites, 3, 219.CrossRefGoogle Scholar
Parolo, M. E., Pettinari, G. R., Musso, T. B., Sánchez-Izquierdo, M. P., & Fernández, L. G. (2014). Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Applied Surface Science, 320, 356363.CrossRefGoogle Scholar
Peng, S. Y., Mao, T. Y., Zheng, C., Wu, X., Wei, Y., Zeng, Z. W., Xiao, R. H., & Sun, Y. (2019). Polyhydroxyl gemini surfactantmodified montmorillonite for efficient removal of methyl orange. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 578, 123602.CrossRefGoogle Scholar
Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G., & Lavorgna, M. (2010). Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108115.CrossRefGoogle ScholarPubMed
Qi, L. Y., Fang, Y., Wang, Z. Y., Ma, N., Jiang, L. Y., & Wang, Y. Y. (2008). Synthesis and physicochemical investigation of long alkylchain betaine zwitterionic surfactant. Journal of Surfactants and Detergents, 11, 5559.CrossRefGoogle Scholar
Qin, S., Hu, S., Luo, Z., Yu, J., & Xue, B. (2011). Effect of preparation processes on morphology and mechanical properties of nano-organmontmorillonite/polyamide-6-polypropylene composites. Acta Materiae Compositae Sinica, 28, 1422.Google Scholar
Qin, C., Troya, D., Shang, C., Hildreth, S., Helm, R., & Xia, K. (2014). Surface catalyzed oxidative oligomerization of 17β-estradiol by Fe3+-saturated montmorillonite. Environmental Science and Technology, 49, 956964.CrossRefGoogle Scholar
Riaz, U., Ashraf, S. M., & Khan, N. (2011). Effects of surfactants on microwave-assisted solid-state intercalation of poly(carbazole) in bentonite. Journal of Nanoparticle Research, 13, 63216331.CrossRefGoogle Scholar
Sarier, N., Onder, E., & Ersoy, S. (2010). The modification of Namontmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 371, 4049.Google Scholar
Scarfato, P., Incarnato, L., Di Maio, L., Dittrich, B., & Schartel, B. (2016). Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Composites Part B – Engineering, 98, 444452.CrossRefGoogle Scholar
Sehgal, P., Kosaka, O., Doe, H., & Otzen, D. E. (2009). Interaction and stability of mixed micelle and monolayer of nonionic and cationic surfactant mixtures. Journal of Dispersion Science and Technology, 30, 10501058.CrossRefGoogle Scholar
Seleci, M., Ag, D., Yalcinkaya, E. E., Demirkol, D. O., Guler, C., & Timur, S. (2012). Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Advances, 2, 21122118.CrossRefGoogle Scholar
Sepehri, S., Rafizadeh, M., Hemmati, M., & Bouhendi, H. (2014). Study of the modification of montmorillonite with monofunctional and trifunctional vinyl chlorosilane. Applied Clay Science, 97–98, 235240.CrossRefGoogle Scholar
Shaheen, U., Turney, T. W., Saito, K., Gates, W. P., & Patti, A. F. (2016). Pendant cyclic carbonate-polynmer/Na-smectite nanocomposites via in situ intercalative polymerization and solution intercalation. Journal of Polymer Science, Part A: Polymer Chemistry, 4, 24212429.CrossRefGoogle Scholar
Shen, W., He, H., Zhu, J., Yuan, P., & Frost, R. L. (2007). Grafting of montmorillonite with different functional silanes via two different reaction systems. Journal of Colloid and Interface Science, 313, 268273.CrossRefGoogle ScholarPubMed
Shumyantseva, V. V., Bulko, T. V., Rudakov, Y. O., Kuznetsova, G. P., Samenkova, N. F., Lisitsa, A. V., Karuzina, I. I., & Archakov, A. I. (2007). Electrochemical properties of cytochroms P450 using nanostructured electrodes: direct electron transfer and electro catalysis. Journal of Inorganic Biochemistry, 101, 859865.CrossRefGoogle ScholarPubMed
Silva, A. A., Dahmouche, K., & Soares, B. G. (2011). Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Applied Clay Science, 54, 151158.CrossRefGoogle Scholar
Silva, I. A., Sousa, F. K. A., Menezes, R. R., Neves, G. A., Santana, L. N. L., & Ferreira, H. C. (2014). Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Applied Clay Science, 95, 371377.CrossRefGoogle Scholar
Silva, R. D., Stefanichen Monteiro, I., Chaparro, T. C., Silva Hardt, R., Giudici, R., Barros-Timmons, A., Bourgeat-Lami, E., & Martins Dos Santos, A. (2017). Investigation of the adsorption of amphipathic macroraft agents onto montmorillonite clay. Langmuir, 33, 95989608.CrossRefGoogle ScholarPubMed
Soares, B. G., Ferreira, S.C., & Livi, S. (2016). Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Applied Clay Science, 135, 347354.CrossRefGoogle Scholar
Songurtekin, D., Yalcinkaya, E. E., Ag, D., Seleci, M., Demirkol, D. O., & Timur, S. (2013). Histidine modified montmorillonite: laccase immobilization and application to flow injection analysis of phenols. Applied Clay Science, 86, 6469.CrossRefGoogle Scholar
Sun, Z., Park, Y., Zheng, S., Ayoko, G. A., & Frost, R. L. (2013). XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide. Journal of Colloid and Interface Science, 408, 7581.CrossRefGoogle ScholarPubMed
Sun, J. L., Zhuang, G. Z., Wu, S. Q., & Zhang, Z. P. (2016). Structure and performance of anionic–cationic-organo-montmorillonite in different organic solvents. RSC Advances, 6, 5474754753.CrossRefGoogle Scholar
Taylor-Lange, S. C., Rajabali, F., Holsomback, N. A., Riding, K., & Juenger, M. C. G. (2014). The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cement and Concrete Composites, 53, 127135.CrossRefGoogle Scholar
Theng, B. K. G. (ed.) (2012). Formation and Properties of Clay-Polymer Complexes. Developments in Clay Science, Volume 4. Amsterdam: Elsevier.Google Scholar
Thue, P. S., Sophia, A. C., Lima, E. C., Wamba, A. G. N., de Alencar, W. S., dos Reis, G. S., Rodembusch, F. S., & Dias, S. L. P. (2018). Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. Journal of Cleaner Production, 171, 3044.CrossRefGoogle Scholar
Tunç, S., Duman, O., & Kancι, B. (2012). Rheological measurements of Na-bentonite and sepiolite particles in the presence of tetradecyltrimethylammonium bromide, sodium tetradecyl sulfonate and Brij 30 surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, 3747.CrossRefGoogle Scholar
Unal, B., Yalcinkaya, E. E., Demirkol, D. O., & Timur, S. (2018). An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-montmorillonite. Applied Surface Science, 444, 542551.CrossRefGoogle Scholar
Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: A brief overview. Inorganic Chemistry Frontiers, 3, 11001111.CrossRefGoogle Scholar
Wallis, P. J., Gates, W. P., Patti, A. F., Scot, J. L., & Teoh, E. (2007). Assessing and improving the catalytic activity of K-10 montmorillonite. Green Chemistry Letters and Reviews, 9, 980986.Google Scholar
Wallis, P. J., Chaffee, A. L., Gates, W. P., Patti, A. F., & Scott, J. L. (2010). Partial exchange of Fe(III) montmorillonite with hexadecyltrimethylammonium cation increases catalytic activity for hydrophobic substrates. Langmuir, 26, 42584265.CrossRefGoogle ScholarPubMed
Wallis, P. J., Gates, W. P., Patti, A. F., & Scott, J. L. (2011). Catalytic activity of choline modified Fe(III) montmorillonite. Applied Clay Science, 53, 336340.CrossRefGoogle Scholar
Wang, Y. F., Song, Z. B., Chen, C. X., & Peng, J. S. (2010). Pictetspengler condensation reactions catalyzed by a recyclable H+-montmorillonite as a heterogeneous Brønsted acid. Science China Chemistry, 53, 562568.CrossRefGoogle Scholar
Wang, X. S., Ma, H. B., Li, G. B., He, J. B., & Na, P. (2014). Removal of pesticides by organic montmorillonite composites. Advanced Materials Research, 875–877, 262266.Google Scholar
Wang, X. L., Liu, B. L., & Yu, P. Z. (2015). Research on the preparation and mechanism of the organic montmorillonite and its application in drilling fluid. Journal of Nanomaterials.CrossRefGoogle Scholar
Wang, G. F., Wang, S., Sun, Z. M., Zheng, S. L., & Xi, Y. F. (2017a). Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye. Applied Clay Science, 148, 110.CrossRefGoogle Scholar
Wang, G. F., Zhang, S., Hua, Y. Y., Su, X., Ma, S. J., Wang, J., Tao, Q., Wang, Y. J., & Komarneni, S. (2017b). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, 19.CrossRefGoogle ScholarPubMed
Wang, G. F., Lian, C., Xi, Y. F., Sun, Z. M., & Zheng, S. L. (2018). Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and zearalenone. Journal of Colloid and Interface Science, 518, 4856.CrossRefGoogle ScholarPubMed
Wang, G. F., Xi, Y. F., Lian, C., Sun, Z. M., & Zheng, S. L. (2019). Simultaneous detoxification of polar aflatoxin b-1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. Journal of Hazardous Materials, 364, 227237.CrossRefGoogle ScholarPubMed
Wei, G., Li, Y., Zhang, L., Cai, S., Zhu, T., Li, Z., & Mo, J. H. (2018). Synthesis of bentonite-supported Fe(II) and heteropolyacid (HPW) composite through a mechanochemical processing. Applied Clay Science, 152, 342351.CrossRefGoogle Scholar
Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2010). Bioorganoclays based on phospholipids as immobilization hosts for biological species. Langmuir, 26, 52175225.CrossRefGoogle ScholarPubMed
Wu, P. X., Dai, Y. P., Long, H., Zhu, N. W., Li, P., Wu, J. H., & Dang, Z. (2012). Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies. Chemical Engineering Journal, 191, 288296.CrossRefGoogle Scholar
Wu, L. M., Yang, C. X., Mei, L. F.., Qin, F. X., Liao, L. B., & Lv, G. C. (2014a). Microstructure of different chain length ionic liquids intercalated into montmorillonite: A molecular dynamics study. Applied Clay Science, 99, 266274.CrossRefGoogle Scholar
Wu, S. Q., Zhang, Z. P., Wang, Y. H., Liao, L. B., & Zhang, J. S. (2014b). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 5964.Google Scholar
Xi, Y. F., Mallavarapu, M., & Naidu, R. (2010). Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Applied Clay Science, 48, 9296.CrossRefGoogle Scholar
Yan, H. Q., Chen, X. Q., Feng, Y. H., Xiang, F., Li, J. C., Shi, Z. F., Wang, X., & Lin, Q. (2016a). Modification of montmorillonite by ball-milling method for immobilization and delivery of acetamiprid based on alginate/exfoliated montmorillonite nanocomposite. Polymer Bulletin, 73, 11851206.CrossRefGoogle Scholar
Yan, H. Q., Chen, X. Q., Feng, Y. H., Xiang, F., Li, J. C., Wang, X. H., & Lin, Q. (2016b). Preparation of liquid paraffin/water pickering emulsions stabilized by modified montmorillonite with wet ball mill method. China Surfactant Detergent & Cosmetics, 46, 697708.Google Scholar
Yan, H. Q., Chen, X. Q., Bao, C. L., Yi, J. L., Lei, M. Y., Ke, C. R., Zhang, W. & Lin, Q. (2020a). Synthesis and assessment of CTAB and NPE modified organomontmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids and Surfaces B: Biointerfaces, 191.CrossRefGoogle Scholar
Yan, H. Q., Zhang, P., Chen, X. Q., Bao, C. L., Zhao, R., Hu, J. S., Liu, C. & Lin, Q. (2020b). Preparation and characterization of octyl phenyl polyoxyethylene ether modified organo-montmorillonite for ibuprofen controlled release. Applied Clay Science, 189.CrossRefGoogle Scholar
Yang, S.F., Gao, M.L., & Luo, Z.X. (2014). Adsorption of 2-naphthol on the organo-montmorillonites modified by gemini surfactants with different spacers. Chemical Engineering Journal, 256, 3950.CrossRefGoogle Scholar
Yang, Q., Gao, M. L., Luo, Z. X., & Yang, S. F. (2016). Enhanced removal of bisphenol A from aqueous solution by organomontmorillonites modified with novel gemini pyridinium surfactants containing long alkyl chain. Chemical Engineering Journal, 285, 2738.CrossRefGoogle Scholar
Yang, J., Yu, K., & Liu, C. (2017). Chromium immobilization in soil using quaternary ammonium cations modified montmorillonite: Characterization and mechanism. Journal of Hazardous Materials, 321, 7380.CrossRefGoogle ScholarPubMed
Ye, L. X., Zhong, A. Y., Chen, D. B., & Yang, F. (2005). Preparation and properties of nano-montmorillonite paper–plastic laminating adhesive. Journal of Applied Polymer Science, 97, 872877.CrossRefGoogle Scholar
Ye, L. X., Zhong, A. Y., Chen, D. B., & Yang, F. (2014). Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. Journal of Physical Chemistry C, 118(21), 1146411477.Google Scholar
Yi, D. Q., Yang, H. X., Zhao, M., Huang, L., Camino, G., Frache, A., & Yang, R. J. (2017). A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites. RSC Advances, 7, 59805988.CrossRefGoogle Scholar
Yιlmaz, Y. Y., Yalçιnkaya, E.E., Demirkol, D. O., & Timur, S. (2020). 4-aminothiophenol-intercalated montmorillonite: organic-inorganic hybrid material as an immobilization support for biosensors. Sensors and Actuators B Chemical, 307.CrossRefGoogle Scholar
Yin, Q. X., Zhang, Z. P., Wu, S. Q., Tan, J. L., & Ke, M. (2015). Preparation and characterization of novel cationic–nonionic organomontmorillonite. Materials Express, 5, 180190.CrossRefGoogle Scholar
Yu, W. H., Li, N., Tong, D. S., Zhou, C. H., Lin, C. X., & Xu, C. Y. (2013). Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Applied Clay Science, 80–81, 443452.CrossRefGoogle Scholar
Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of ctab-montmorillonite: Formation mechanism and swelling behavior in xylene. Applied Clay Science, 97–98, 222234.CrossRefGoogle Scholar
Yu, K., Xu, J., Jiang, X. H., Liu, C., McCall, W., & Lu, J. L. (2017a). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884891.CrossRefGoogle ScholarPubMed
Yu, W. H., Zhu, T. T., Tong, D. S., Wang, M., Wu, Q. Q., & Zhou, C. H. (2017b). Preparation of organo-montmorillonites and the relationship between microstructure and swellability. Clays and Clay Minerals, 65, 417430.CrossRefGoogle Scholar
Yu, C.C., Ke, Y.C., Deng, Q.C., Lu, S.C., Ji, J.Q., Hu, X., & Zhao, Y. (2018). Synthesis and characterization of polystyrenemontmorillonite nanocomposite particles using an anionicsurfactant-modified clay and their friction performance. Applied Sciences–Basel, 8. https://doi.org/10.3390/app8060964.CrossRefGoogle Scholar
Zawrah, M. F., Khattab, R. M., Saad, E. M., & Gado, R. A. (2014). Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochimica Acta Part a–Molecular and Biomolecular Spectroscopy, 122, 616623.CrossRefGoogle ScholarPubMed
Zhang, Z., Liao, L., & Xia, Z. (2010). Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Applied Clay Science, 50, 576581.CrossRefGoogle Scholar
Zhang, Y. X., Long, Y. Y., Zhang, Y. C., Zhu, Y., Wang, H. T., Wu, H. Y., & Lu, W. J. (2012a). Effect of a mixed anionic-nonionic surfactant adsorption on bentonite structure and on distribution of pentachlorophenol. Applied Clay Science, 69, 9398.CrossRefGoogle Scholar
Zhang, Y. X., Zhao, Y., Zhu, Y., Wu, H. Y., Wang, H. T., & Lu, W. J. (2012b). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. Journal of Environmental Sciences, 24, 15251532.CrossRefGoogle ScholarPubMed
Zhang, Z. P., Zhang, J. C., Liao, L. B., & Xia, Z. G. (2013). Synergistic effect of cationic and anionic surfactants for the modification of Camontmorillonite. Materials Research Bulletin, 48, 18111816.CrossRefGoogle Scholar
Zhang, J. J., Mei, Q. L., Chen, L., Chen, X., & Zu, L. (2016). Thermal analysis of montmorillonite modified by imidazolium. Emerging Materials Research, 5, 214220.CrossRefGoogle Scholar
Zhang, H., Zhang, J. L., Gao, Y. L., Wang, W. T., Dong, H. Z., Hou, H. X., & Liu, X. X. (2017). Effect of modification extent of montmorillonite on the performance of starch nanocomposite films. StarchStarke, 69.CrossRefGoogle Scholar
Zheng, J. P., Li, J., Hao, H., & Yao, K. D. (2013). Influence of charge density and chain length on the interaction between organic anion and montmorillonite. Journal of Wuhan University of Technology-Materials Science Edition, 28, 611.CrossRefGoogle Scholar
Zhou, C. H., Zhang, D., Tong, D. S., Wu, L. M., Yu, W. H., & Ismadji, S. (2012). Paper-like composites of cellulose acetate-organomontmorillonite for removal of hazardous anionic dye in water. Chemical Engineering Journal, 209, 223234.CrossRefGoogle Scholar
Zhou, Q., Zhu, R. L., Parker, S. C., Zhu, J. X., He, H. P., & Molinari, M. (2015). Modelling the effects of surfactant loading level on the sorption of organic contaminants on organoclays. RSC Advances, 5, 4702247030.CrossRefGoogle Scholar
Zhou, D. J., Zhang, Z. P., Tang, J. L., Wang, F. W., & Liao, L. B. (2016a). Applied properties of oil-based drilling fluids with montmorillonites modified by cationic and anionic surfactants. Applied Clay Science, 121–122, 18.Google Scholar
Zhou, D. J., Zhang, Z. P., Tang, J. L., Zhang, M. Y., & Liao, L. B. (2016b). Effects of variables on the dispersion of cationic–anionic organomontmorillonites and characteristics of pickering emulsion. RSC Advances, 6, 96789685.CrossRefGoogle Scholar
Zhou, D. J., Zhang, Z. P., Tang, J. L., Wu, S. Q., & Zhao, J. L. (2016c). A comparative study performance of cationic organic montmorillonite prepared by different methods. Science and Engineering of Composite Materials, 25, 5358.CrossRefGoogle Scholar
Zhou, C. H., Li, C. J., Gates, W. P., Zhu, T. T., & Yu, W. H. (2019). Co-intercalation of organic cations/amide molecules into montmorillonite with tunable hydrophobicity and swellability. Applied Clay Science, 179, 105157.CrossRefGoogle Scholar
Zhu, J. X., Qing, Y. H., Wang, T., Zhu, R. L., Wei, J. M., Tao, Q., Yuan, P., & He, H. P. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386392.CrossRefGoogle ScholarPubMed
Zhu, J. X., Qing, Y. H., Ma, L. Y., Zhu, R. L., & He, H. P. (2014). The structure of montmorillonites modified with zwitterionic surfactants and their sorption ability. Mineralogy and Petrology, 109, 349355.CrossRefGoogle Scholar
Zhu, J. X., Zhang, P., Qing, Y. H., Wen, K., Su, X. L., Ma, L. Y., Wei, J. M., Liu, H. M., He, H. P., & Xi, Y. F. (2017). Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites. Applied Clay Science, 141, 265271.CrossRefGoogle Scholar
Zhu, T.T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 4866.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Guo, J. S., Liao, L. B., & Zhao, J. L. (2015). A new ball milling method to produce organomontmorillonite from anionic and nonionic surfactants. Applied Clay Science, 104, 1826.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, H. X., Wu, H., Zhang, Z. P., & Liao, L. B. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244252.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Wu, H., Zhang, H. X., Zhang, X. M., & Liao, L. B. (2017b). Influence of the nonionic surfactants' nature on the structures and properties of organo-montmorillonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 116123.Google Scholar
Zhuang, G. Z., Zhang, Z. P., & Jaber, M. (2019a). Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Applied Clay Science, 177, 6381.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Peng, S. M., Gao, J. H., Pereira, F. A. R., & Jaber, M. (2019b). The interaction between surfactants and montmorillonite and its influence on the properties of organomontmorillonite in oil-based drilling fluids. Clays and Clay Minerals, 67, 190208.CrossRefGoogle Scholar