Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T14:24:57.628Z Has data issue: false hasContentIssue false

Co-Modification of Bentonite by CTAB and Silane and its Performance in Oil-Based Drilling Mud

Published online by Cambridge University Press:  01 January 2024

Miao Guo
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Guangbin Yang*
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Shengmao Zhang
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Yujuan Zhang
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Chuanping Gao
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Chunli Zhang
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
Pingyu Zhang*
Affiliation:
Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004 Henan, China
*
*E-mail address of corresponding author: yang0378@henu.edu.cn
*E-mail address of corresponding author: pingyu@henu.edu.cn

Abstract

The stability, dispersion, and rheological properties of clay suspensions are important in the process of drilling. Organic clays were obtained traditionally by cation exchange, which is thermally unstable due to weak electrostatic interaction between the cationic surfactant and clay minerals. The purpose of the present study was to yield a stable and well dispersed organic bentonite (OBent) as a rheological additive for oil-based drilling mud. The co-modified method was used to modify bentonite by a cationic surfactant (cetyltrimethoxyammonium bromide: CTAB) and a silane coupling agent (hexadecyltrimethoxysilane: HDTMS). Firstly, the basal spacing of bentonite was enlarged by intercalation of CTAB, and the thermal stability of bentonite was improved by covalent bonds of HDTMS onto the bentonite platelets. The as-prepared OBent was characterized by infrared analysis, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The hydrophobicity, solubility, viscosity, and tribological performance of the OBent were also recorded. The test results showed that the hydrophobicity of the co-modified bentonite was improved significantly, and was greater than that of bentonite modified with single surfactant CTAB or HDTMS. The bentonite modified by the surfactant together with the silane coupling agent had stable rheology and a lower coefficient of friction than the single surfactant-modified bentonite because more HDTMS entered into the interlayer spaces and formed chemical bonds at the inner surface of platelets.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asgari, M., Abouelmagd, A., & Sundararaj, U. (2017). Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Applied Clay Science, 146, 439448.CrossRefGoogle Scholar
Asgari, M., & Sundararaj, U. (2018a). Pre-exfoliated nanoclay through two consecutive reaction systems: Silane functionalization followed by grafting of amino acid monomers. Applied Clay Science, 151, 8191.CrossRefGoogle Scholar
Asgari, M., & Sundararaj, U. (2018b). Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting. Applied Clay Science, 153, 228238.CrossRefGoogle Scholar
Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A., & Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719.CrossRefGoogle Scholar
Battas, A., Gaidoumi, A. E., Ksakas, A., & Kherbeche, A. (2019). Adsorption study for the removal of nitrate from water using local clay. The Scientific World Journal, 2019, 9529618.CrossRefGoogle ScholarPubMed
Bergaya, F., & Lagaly, G. (2001). Surface modification of clay minerals. Applied Clay Science, 19, 13.CrossRefGoogle Scholar
Bujdák, J. (2015). Effect of layer charge on the formation of polymer/ layered silicate nanocomposites: Intercalation of polystyrene. The Journal of Physical Chemistry C, 119, 1201612022.CrossRefGoogle Scholar
Caenn, R., & Chillingar, G. V. (1996). Drilling fluids: State of the art. Journal of Petroleum Science and Engineering, 14, 221230.CrossRefGoogle Scholar
Chen, T. X., Yuan, Y., Zhao, Y. L., Rao, F., & Song, S. X. (2018). Effect of layer charges on exfoliation of montmorillonite in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548, 9297.CrossRefGoogle Scholar
de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 824.CrossRefGoogle Scholar
El Gaidoumi, A., Chaouni Benabdallah, A., El Bali, B., & Kherbeche, A. (2018). Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arabian Journal for Science and Engineering, 43, 191197.CrossRefGoogle Scholar
El Gaidoumi, A., Dona-Rodriguez, J. M., Pulido Melian, E., Gonzalez-Diaz, O. M., Navio, J. A., El Bali, B., & Kherbeche, A. (2019a). Catalytic efficiency of cu-supported pyrophyllite in heterogeneous catalytic oxidation of phenol. Arabian Journal for Science and Engineering, 44, 63136325.CrossRefGoogle Scholar
El Gaidoumi, A., Loqman, A., Benadallah, A. C., El Bali, B., & Kherbeche, A. (2019b). Co (ii)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10, 10431051.CrossRefGoogle Scholar
El Gaidoumi, A., Miguel Dona-Rodriguez, J., Pulido Melian, E., Manuel Gonzalez-Diaz, O., El Bali, B., Antonio Navio, J., & Kherbeche, A. (2019c). Mesoporous pyrophyllite-titania nanocomposites: Synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45, 333353.CrossRefGoogle Scholar
Erdem, B., Özcan, A. S., & Özcan, A. (2010). Preparation of hdtmabentonite: Characterization studies and its adsorption behavior toward dibenzofuran. Surface and Interface Analysis, 42, 13511356.CrossRefGoogle Scholar
Fu, M., Zhang, Z. P., Wu, L. M., Zhuang, G. Z., Zhang, S., Yuan, J. Y., & Liao, L. B. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132–133, 694701.CrossRefGoogle Scholar
Gamba, M., Kováš, P., Pospíšil, M., & Torres Sánchez, R. M. (2017). Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Applied Clay Science, 137, 5968.CrossRefGoogle Scholar
Geyer, B., Hundshammer, T., Röhner, S., Lorenz, G., & Kandelbauer, A. (2014). Predicting thermal and thermo-oxidative stability of silane-modified clay minerals using thermogravimetry and isoconversional kinetic analysis. Applied Clay Science, 101, 253259.CrossRefGoogle Scholar
He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, 287293.CrossRefGoogle Scholar
He, H., Ma, L., Zhu, J., Frost, R. L., Theng, B. K. G., & Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 2228.CrossRefGoogle Scholar
Hunnicutt, M. L., & Harris, J. M. (1986). Reactivity of organosilane reagents on microparticulate silica Analytical Chemistry, 58, 748752.CrossRefGoogle Scholar
Huskić, M., Žigon, M., & Ivanković, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109115.CrossRefGoogle Scholar
Impens, N. R. E., van der Voort, P., & Vansant, E. F. (1999). Silylation of micro-, meso- and non-porous oxides: A review. Microporous and Mesoporous Materials, 28, 217232.CrossRefGoogle Scholar
Kaufhold, S., & Dohrmann, R. (2013). The variable charge of dioctahedral smectites. Journal of Colloid and Interface Science, 390, 225233.CrossRefGoogle ScholarPubMed
Meng, X. H., Zhang, Y. H., Zhou, F. S., Chu, P. K. (2012). Effects of carbon ash on rheological properties of water-based drilling fluids. Journal of Petroleum Science and Engineering, 100, 18.CrossRefGoogle Scholar
Minase, M., Kondo, M., Onikata, M., & Kawamura, K. (2008). The viscosity of organic liquid suspensions of trimethyldococylammonium-montmorillonite complexes. Clays and Clay Minerals, 56, 4965.CrossRefGoogle Scholar
Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O., & Mohammed, A. K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Applied Water Science, 10, 136.CrossRefGoogle Scholar
Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 11191198.CrossRefGoogle Scholar
Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G., & Lavorgna, M. (2010). Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108115.CrossRefGoogle ScholarPubMed
Raji, M., Mekhzoum, M. E. M., Rodrigue, D., Qaiss, A. E. K., & Bouhfid, R. (2018). Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites Part B: Engineering, 146, 106115.CrossRefGoogle Scholar
Shanmugharaj, A. M., Rhee, K. Y., & Ryu, S. H. (2006). Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854859.CrossRefGoogle ScholarPubMed
Shen, T., & Gao, M. (2019). Gemini surfactant modified organo-clays for removal of organic pollutants from water: A review. Chemical Engineering Journal, 375, 127.CrossRefGoogle Scholar
Shen, H., Lv, K., Huang, X., Liu, J., Bai, Y., Wang, J., & Sun, J. (2019). Hydrophobic-associated polymer-based laponite nanolayered silicate composite as filtrate reducer for water-based drilling fluid at high temperature. Journal of Applied Polymer Science, 137, 48608.CrossRefGoogle Scholar
Sinha Ray, S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28, 15391641.CrossRefGoogle Scholar
Song, K. (2001). Characterization of montmorillonite surfaces after modification by organosilane. Clays and Clay Minerals, 49, 119125.CrossRefGoogle Scholar
Sun, J. L., Zhuang, G. Z., Wu, S. Q., & Zhang, Z. P. (2016). Structure and performance of anionic–cationic-organo-montmorillonite in different organic solvents. RSC Advances, 6, 5474754753.CrossRefGoogle Scholar
van Olphen, H. (1964). Nternal mutual flocculation in clay suspensions. Journal of Colloid Science, 19, 313322.CrossRefGoogle Scholar
Waddell, T. G., Leyden, D. E., & DeBello, M. T. (1981). The nature of organosilane to silica-surface bonding. Journal of the American Chemical Society, 103, 53035307.CrossRefGoogle Scholar
Wang, Z. Y., Xia, Y. Q., & Liu, Z. L. (2011). Study the sensitivity of solid lubricating additives to attapulgite clay base grease. Tribology Letters, 42, 141148.CrossRefGoogle Scholar
Xi, Y. F., Zhou, Q., Frost, R. L., & He, H. P. (2007). Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. Journal of Colloid and Interface Science, 311, 347353.CrossRefGoogle ScholarPubMed
Xie, W., Gao, Z. M., Pan, W. P., Hunter, D., Singh, A., & Vaia, R. (2001). Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 29792990.CrossRefGoogle Scholar
Yang, Y., Zhu, Z. K., Yin, J., Wang, X. Y., & Qi, Z. E. (1999). Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer, 40, 44074414.CrossRefGoogle Scholar
Zhong, Y., & Wang, S. Q. (2003). Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay. Journal of Rheology, 47, 483495.CrossRefGoogle Scholar
Zhu, L. Z., Tian, S. L., Zhu, J. X., & Shi, Y. (2007). Silylated pillared clay (SPILC): A novel bentonite-based inorgano-organo composite sorbent synthesized by integration of pillaring and silylation. Journal of Colloid and Interface Science, 315, 191199.CrossRefGoogle ScholarPubMed
Zhuang, G. Z., Zhang, Z. P., Fu, M., Ye, X., & Liao, L. B. (2015). Comparative study on the use of cationic–nonionic-organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 116–117, 257262.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Sun, J. L., & Liao, L. B. (2016). The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures. Applied Clay Science, 124–125, 2130.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, H. X., Wu, H., Zhang, Z. P., & Liao, L. B. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244252.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Wu, H., Zhang, H. X., Zhang, X. M., & Liao, L. B. (2017b). Influence of the nonionic surfactants' nature on the structures and properties of organo-montmorillonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 116123.CrossRefGoogle Scholar
Zhuang, G. Z., Zhang, Z. P., Peng, S. M., Gao, J. H., Pereira, F. A. R., & Jaber, M. (2019). The interaction between surfactants and montmorillonite and its influence on the properties of organomontmorillonite in oil-based drilling fluids. Clays and Clay Minerals, 67, 190208.CrossRefGoogle Scholar