Skip to main content
Log in

Optimization of Hidden Target Screening for Solanum sisymbriifolium Glycoalkaloids

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Solanum sisymbriifolium also known as litchi tomato or sticky nightshade is one of the promising feedstocks for the production of nematicides as it was demonstrated to be efficient for the control of a wide range of pests including major potato pests, Globodera rostochiensis and Globodera pallida. While pesticidal effects are often attributed to a biologically active group of compounds called glycoalkaloids, the specific chemistry of the plant is still poorly understood. The objective of this study was to optimize the high-performance liquid chromatography–mass spectrometry analysis and extraction procedure for glycoalkaloid chemical group to get a better insight into glycoalkaloid composition. The results showed that 19 compounds can be identified as glycoalkaloids with five major glycoalkaloids representing 95% of total composition and with solamargine being the most abundant compound. Structure elucidation based on acid hydrolysis and mass spectrometry spectral analysis suggested that all five major glycoalkaloids belong to solasodine type of glycoalkaloids with different methylation functionalities. Extraction of these compounds from plant material was achieved with aqueous methanol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

Not applicable.

Availability of data and material

Data are available upon request.

References

  1. Dandurand LM, Zasada IA, LaMondia JA (2019) Effect of the trap crop, Solanum sisymbriifolium, on Globodera pallida, Globodera tabacum, and Globodera ellingtonae. J Nematol 51:1–11

    Article  CAS  Google Scholar 

  2. More GK (2019) A review of the ethnopharmacology, phytochemistry and pharmacological relevance of the South African weed Solanum sisymbriifolium Lam. (Solanaceae). Environ Dev Sustain 21:37–50

    Article  Google Scholar 

  3. Lima GPP, Borges CV, Vianello F et al (2017) Phytochemicals in organic and conventional fruits and vegetables. In: Fruit and vegetable phytochemicals, pp 1305–1322

  4. Roddick JG, Melchers G (1985) Steroidal glycoalkaloid content of potato, tomato and their somatic hybrids. Theor Appl Genet 70:655–660

    Article  CAS  Google Scholar 

  5. Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61:83–111

    Article  CAS  Google Scholar 

  6. Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167

    Article  CAS  Google Scholar 

  7. Pasdaran A, Pasdaran A, Mamedov N (2017) Antibacterial and antioxidant activities of the volatile composition of the flower and fruit of Solanum sisymbriifolium (Litchi Tomato). Pharm Sci 23:66–71

    Article  Google Scholar 

  8. Bagalwa J-JM, Voutquenne-Nazabadioko L, Sayagh C, Bashwira AS (2010) Evaluation of the biological activity of the molluscicidal fraction of Solanum sisymbriifolium against non target organisms. Fitoterapia 81:767–771

    Article  CAS  Google Scholar 

  9. Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681

    Article  CAS  Google Scholar 

  10. Ibarrola DA, Hellión-Ibarrola MC, Montalbetti Y et al (2011) Antihypertensive effect of nuatigenin-3-O-β-chacotriose from Solanum sisymbriifolium Lam. (Solanaceae) (ñuatî pytâ) in experimentally hypertensive (ARH + DOCA) rats under chronic administration. Phytomedicine 18:634–640

    Article  CAS  Google Scholar 

  11. Ibarrola DA, del Hellion-Ibarrola MC, Alvarenga NL et al (2006) Cardiovascular action of nuatigenosido from Solanum sisymbriifolium. Pharm Biol 44:378–381

    Article  CAS  Google Scholar 

  12. Ferro EA, Alvarenga NL, Ibarrola DA et al (2005) A new steroidal saponin from Solanum sisymbriifolium roots. Fitoterapia 76:577–579

    Article  CAS  Google Scholar 

  13. Distl M, Wink M (2009) Identification and Quantification of steroidal alkaloids from wild tuber-bearing Solanum species by HPLC and LC-ESI-MS. Potato Res 52:79–104

    Article  CAS  Google Scholar 

  14. Brown MS, McDonald GM, Friedman M (1999) Sampling leaves of young potato (Solanum tuberosum) plants for glycoalkaloid analysis. J Agric Food Chem 47:2331–2334

    Article  CAS  Google Scholar 

  15. Nikolic NC, Stankovic MZ, Markovic DZ (2005) Liquid-liquid systems for acid hydrolysis of glycoalkaloids from Solanum tuberosum L. tuber sprouts and solanidine extraction. Med Sci Monit Int Med J Exp Clin Res 11:BR200-5

    Google Scholar 

  16. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  Google Scholar 

  17. Ludwig M, Dührkop K, Böcker S (2018) Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints. Bioinformatics 34:i333–i340

    Article  CAS  Google Scholar 

  18. Jeffryes JG, Colastani RL, Elbadawi-Sidhu M et al (2015) MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform 7:44

    Article  Google Scholar 

  19. Cuthbertson DJ, Johnson SR, Piljac-Zegarac J et al (2013) Accurate mass-time tag library for LC/MS-based metabolite profiling of medicinal plants. Phytochemistry 91:187–197

    Article  CAS  Google Scholar 

  20. Kruve A, Kaupmees K (2017) Adduct formation in ESI/MS by mobile phase additives. J Am Soc Mass Spectrom 28:887–894

    Article  CAS  Google Scholar 

  21. Sugimura N, Furuya A, Yatsu T, Shibue T (2015) Prediction of adducts on positive mode electrospray ionization mass spectrometry: Proton/sodium selectivity in methanol solutions. Eur J Mass Spectrom 21:725–731

    Article  CAS  Google Scholar 

  22. Leitner A, Emmert J, Boerner K, Lindner W (2007) Influence of solvent additive composition on chromatographic separation and sodium adduct formation of peptides in HPLC–ESI MS. Chromatographia 65:649–653

    Article  CAS  Google Scholar 

  23. Cahill MG, Caprioli G, Vittori S, James KJ (2010) Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry. J Mass Spectrom 45:1019–1025

    Article  CAS  Google Scholar 

  24. Gu X-Y, Shen X-F, Wang L et al (2018) Bioactive steroidal alkaloids from the fruits of Solanum nigrum. Phytochemistry 147:125–131

    Article  CAS  Google Scholar 

  25. Nawaz H, Ahmed E, Sharif A et al (2014) New steroidal alkaloid constituent from Solanum surrattense. Asian J Chem 26:1119–1121

    Article  CAS  Google Scholar 

  26. Usubillaga A, Aziz I, Tettamanzi MC et al (1997) Steroidal alkaloids from Solanum sycophanta. Phytochemistry 44:537–543

    Article  CAS  Google Scholar 

  27. Udalova ZV, Zinov’eva S V, Vasil’eva IS, Paseshnichenko VA, (2004) Interaction between structure of plant steroids and their effect on phytonematodes. Prikl Biokhim Mikrobiol 40:109–113

    PubMed  Google Scholar 

  28. Popova IE, Hall C, Kubatova A (2009) Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry. J Chromatogr A 1216:217–229

    Article  CAS  Google Scholar 

  29. Van Gelder WMJ (1984) A new hydrolysis technique for steroid glycoalkaloids with unstable aglycones from Solanum spp. J Sci Food Agric 35:487–494

    Article  Google Scholar 

  30. Väänänen T, Kuronen P, Pehu E (2000) Comparison of commercial solid-phase extraction sorbents for the sample preparation of potato glycoalkaloids. J Chromatogr A 869:301–305

    Article  Google Scholar 

  31. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trends Anal Chem 80:641–654

    Article  CAS  Google Scholar 

  32. Murakami H, Tomita H, Aoyanagi T et al (2019) Effects of pendant-like hydrophilic monomers on the adsorption properties of reversed-phase-type sorbents for solid-phase extraction. Anal Chim Acta 1075:106–111

    Article  CAS  Google Scholar 

  33. Haaf F, Sanner A, Straub F (1985) Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J 17:143–152

    Article  CAS  Google Scholar 

  34. Starmans DAJ, Nijhuis HH (1996) Extraction of secondary metabolites from plant material: a review. Trends Food Sci Technol 7:191–197

    Article  CAS  Google Scholar 

  35. Byrne FP, Jin S, Paggiola G et al (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:7

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Joseph Kuhl (University of Idaho, Moscow, ID, USA) for growing plants and Ricardo Lopez for plant collection and sample preparation. The work described has been published previously in parts as an academic thesis by ProQuest LLC with the copyright retained by Dr. Inna Popova.

Funding

This work was supported by the Agriculture and Food Research Initiative competitive grant (2015-69004-23634) of the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

IP: conceptualization, methodology, investigation, and writing—original draft; MM: data curation, writing—review and editing, supervision, and project administration.

Corresponding author

Correspondence to Inna E. Popova.

Ethics declarations

Conflict of Interest

Authors declare no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, I.E., Morra, M.J. Optimization of Hidden Target Screening for Solanum sisymbriifolium Glycoalkaloids. Chromatographia 84, 135–145 (2021). https://doi.org/10.1007/s10337-020-03989-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03989-7

Keywords

Navigation