Skip to main content
Log in

How the stability, reactivity and optical response of the protonated base pairs differ with other biologically important adenine–thymine pairs: a DFT and TD-DFT approach

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The chemical behaviour of six biologically important Adenine (A)–Thymine (T) base pairs formed as a result of the interaction between Watson–Crick(WC) type Adenine, Thymine, rare Adenine (A*) and rare Thymine (T*) bases have been studied using density functional theory (DFT) and time-dependent DFT (TD-DFT). The geometrical optimization and other relevant properties have been calculated by employing the hybrid functional CAM-B3LYP and M06-2X with 6-311++G(d,p) basis set for the reliable treatment of dispersion interaction in the gas phase. The energetic parameters show that the A*T* base pair has the highest binding energy. The characteristic Raman modes due to stretching vibrations show significant change for conformational and structural alteration. The absorption spectra of all AT conformers belong to the UV region and the excitations are due to π → π* and π → ryd* transitions. A distinct absorption peak has been observed for the protonated base pairs at a relatively higher wavelength. Natural transition orbital and molecular orbital analysis define charge transfer states associated with the electronic transitions. The lowest ionization potential, positive electron affinity and least value of hardness of the A*T* compared to the other AT base pairs suggest more reactivity of A*T* base pair than the others in chemical and biological reactions. Naturally, these structural rearrangements affect various biological and chemical processes, therefore, this study may be helpful to find out the best fit between the structurally flexible ligand and receptor and how the interaction will affect the chemistry of these important molecules.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asturiol D, Duran M, Salvador P (2008) Intramolecular basis set superposition error effects on the planarity of benzene and other aromatic molecules: a solution to the problem. J Chem Phys 128:1–5

    Article  Google Scholar 

  • Barbatti M, Borin AC, Ullirich S (2015) Photoinduced phenomena in nucleic acids II. Springer, Berlin

    Book  Google Scholar 

  • Borissova OF, Shchyolkina AK, Chernov BK, Tchurikov NA (1993) Relative stability of AT and GCpairs in parallel DNA duplex formed by a natural sequence. FEBS Lett 322:304–306

    Article  Google Scholar 

  • Brovarets OO, Yurenko YP, Hovorun DM (2014) Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dyn 32:993–1022

    Article  CAS  PubMed  Google Scholar 

  • Brovarets’ OO (2013) Structurally-energetic properties ofthe four configurations of the A–T and G–C DNA basepairs: comparative quantum-chemical analysis. Ukrain Biochem J 85:104–110

    Article  Google Scholar 

  • Brovarets’ OO, Hovorun DM (2010) How stable arethe mutagenic tautomers of DNA bases? Biopolym Cell 26:72–76

    Article  Google Scholar 

  • Brovarets’ OO, Hovorun DM (2013) Can tautomerisationof the A–T Watson-Crick base pair via double protontransfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn 32:127–154

    Article  Google Scholar 

  • Brovarets’ OO, Kolomiets IM, Hovorun DM (2012) Elementary molecular mechanisms of the spontaneouspoint mutations in DNA: a novel quantum-chemicalinsight into the classical understanding. In: Tada T (ed) Quantum chemistry—molecules for innovations (59–102). In Tech Open Access, Rijeka

    Google Scholar 

  • Chakraborty S, Lima BC, Silva AM, Chaudhuri P (2017) Effect of hydrogen-bonded interactions on the energetics and spectral properties of the astromoleculeaminoacetonitrile. Int J Quantum Chem 25459:1–13

    Google Scholar 

  • Chawla M, Abdel-Azeim S, Oliva R, Cavallo L (2014) Higher order structural effects stabilizing the reverse Watson–Crick Guanine–Cytosine base pair in functional RNAs. Nucleic Acid Res 42:714–726

    Article  CAS  PubMed  Google Scholar 

  • Cheng YK, Pettitt BM (1992) Hoogsteen versus reversed-Hoogsteen base pairing: DNA triple helixes. J Am Chem Soc 114:4465–4474

    Article  CAS  Google Scholar 

  • Dargiewicz M, Biczysko M, Improta R, Barone V (2012) Solvent effects on electron-driven proton-transfer processes: adenine–thymine base pairs. Phys Chem Chem Phys 14:8981–8989

    Article  CAS  PubMed  Google Scholar 

  • Das M, Ghosh SK (2017) A computational investigation of the red and blue shifts in hydrogen bonded systems. J Chem Sci 129:975–981

    Article  CAS  Google Scholar 

  • De V, Mattanja S, Pavel H (2007) Gas-phase spectroscopy of biomolecular building blocks annu. Rev Phys Chem 58:585–612

    Article  Google Scholar 

  • Dennington R, Keith T, Millam J (2009) Gaussview, version 5, Semichem Inc., K. S. Shawnee Mission

  • Donohue J, Trueblood KN (1960) Base pairing in DNA. J Mol Biol 2:363–371

    Article  CAS  PubMed  Google Scholar 

  • Dunger A, Limbach HH, Weisz K (1998) NMR studies on the self-association of uridine and uridine analogues chem. Eur J 4:621–628

    Article  CAS  Google Scholar 

  • Dunger A, Limbach HH, Weisz K (2000) Geometry and strength of hydrogen bonds in complexes of 2′-deoxyadenosine with 2′-deoxyuridine. J Am Chem Soc 122:10109–10114

    Article  CAS  Google Scholar 

  • Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  • Farmanzadeh D, Najafi M (2015) Theoretical study of anticancer properties of indolyl-oxazole drugs and their interactions with DNA base pairs in gas phase and solvent. Struct Chem 26:831–844

    Article  CAS  Google Scholar 

  • Farrell RA, Fitzgerald TG, Borah D, Holmes JD, Morris MA (2009) Chemical interactions and their role in the microphase separation of block copolymer thin films. Int J Mol Sci 10:3671–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford

  • Ghosal G, Muniyappa K (2006) Hoogsteen base-pairingrevisited: resolving a role in normal biological processesand human diseases. Biochem Biophys Res Commun 343:1–7

    Article  CAS  PubMed  Google Scholar 

  • Głowacki ED, Vladu M, Bauer S, Sariciftci NS (2013) Hydrogen-bonds in molecular solids—from biological systems to organic electronics. J Mater Chem B1:3742–3753

    Google Scholar 

  • Gobbo JP, Saur IV, Roca-Sanjuan D, Serrano-Andres L, Merchan M, Borin AC (2012) On the deactivation mechanisms of adenine-thymine base pair. J Phys Chem B 116:4089–4097

    Article  CAS  PubMed  Google Scholar 

  • Grabowski SJ (2004) Hydrogen bonding strength—measures based on geometric and topological parameters. J Phys Org Chem 17:18–31

    Article  CAS  Google Scholar 

  • Greve C, Preketes NK, Fidder H, Costard R, Koeppe B, Heisler IA, Mukamel S, Temps F, Nibbering ETJ, Elsaesser T (2013) N–H stretching excitations in adenosine-thymidine base pairs in solution: pair geometries, infrared line shapes, and ultrafast vibrational dynamics. J Phys Chem A 117:594–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GreveC PreketesNK, Fidder H, Costard R, Koeppe B, Heisler IA, Mukamel S, Temps F, Nibbering ETJ, Elsaesser T (2013) N–H stretching excitations in adenosine-thymidine base pairs in solution: pair geometries, infrared line shapes and ultrafast vibrational dynamics. J Phys Chem A117:594–607

    Article  Google Scholar 

  • Guerra CF, Bickelhaupt FM (2002) Orbital interactions in strong and weak hydrogen bonds are essential for DNA replication. Angew Chem Int 41:2092–2095

    CAS  Google Scholar 

  • Guerra CF, Snijders JG, Bickelhaupt FM, Baerends EJ (2000) Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment. J Am Chem Soc 122:4117–4128

    Article  CAS  Google Scholar 

  • Haschemeyer AEV, Sobell HM (1963) The crystalstructure of an intermolecular nucleoside complex: adenosineand 5-bromouridine. Proc Natl Acad Sci USA 50:872–877

    Article  CAS  PubMed  Google Scholar 

  • Heidari A (2016) An analytical and computational infrared spectroscopic review of vibrational modes in nucleic acids. J Anal Pharm Chem 3:1058–1072

    Google Scholar 

  • Hernández EG, Garza J (2017) Reactivity sites in dopamine depend on its intramolecular hydrogen bond. J Mex Chem Soc 61:222–228

    Google Scholar 

  • Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Jurecka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine···cytosine, adenine···thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J Am Chem Soc 50:15608–15613

    Article  Google Scholar 

  • Kelly SO, Barton JK (1999) Electron transfer between bases in double helical DNA. Science 283:375–381

    Article  Google Scholar 

  • Khuu P, Ho PS (2009) A rare nucleotide base tautomerin the structure of an asymmetric DNA junction. Biochemistry 48:7824–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobko N, Dannenberg JJ (2003) Cooperativity in amide hydrogen bonding chains. relation between energy, position, and H-bond chain length in peptide and protein folding models. J Phys Chem A 107:10389–10395

    Article  CAS  Google Scholar 

  • Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwertenzu den EinzelnenElektronenEines Atoms. Physica 1:104–113

    Article  Google Scholar 

  • Kortemme T, Morozov AV, Baker D (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 326:1239–1259

    Article  CAS  PubMed  Google Scholar 

  • Leal LAE, Acevedo LO (2015) On the interaction between gold and silvermetal atoms and DNA/RNA nucleobases—a comprehensive computational studyof ground state properties. Nanotechnol Rev 4:171–194

    Google Scholar 

  • Li X, Cai Z, Sevilla MD (2001) Investigation of proton transfer within DNA base pair anion and cation radicals by density functional theory (DFT). J Phys Chem B 105:10115–10123

    Article  CAS  Google Scholar 

  • Li X, Cai Z, Sevilla MD (2002) Energetics of the radical ions of the AT and AU base pairs: a density functional theory (DFT) study. J Phys Chem A 106:9345–9351

    Article  CAS  Google Scholar 

  • Löwdin PO (1963) Proton tunneling in DNA and its biological implications. Rev Mod Phys 35:724–732

    Article  Google Scholar 

  • Madzharova F, Heiner Z, Gühlke M, Kneipp J (2016) Surface-enhanced hyper-raman spectra of adenine, guanine, cytosine, thymine, and uracil. J Phys Chem C 120:15415–15423

    Article  CAS  Google Scholar 

  • Marchetti B, Karsili TN, Ashfold MN, Domcke W (2016) A ‘bottom up’, ab initio computational approach to understanding fundamental photophysical processes in nitrogen containing heterocycles, DNA bases and base pairs. Phys Chem Chem Phys 18:20007–20027

    Article  CAS  PubMed  Google Scholar 

  • Nikolova EN, Kim E, Wise AA, O’Brie PJ, Andricioaei I, Al-Hashimi HM (2011) Transient Hoogsteenbase pairs in canonical duplex DNA. Nature 470:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisho M, Umezawa Y, Fantini J, Weiss MS, Chakrabarty P (2014) CH–π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 16:12648–12683

    Article  Google Scholar 

  • Nosenko Y, Kunitski M, Stark T, Gobel M, Tarakeswar P, Brutschy B (2013) Vibrational signatures of Watson–Crick base pairing in adenine–thymine mimics. Phys Chem Chem Phys 15:11520–11530

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comp Chem 29:839–845

    Article  Google Scholar 

  • Parvathy VR, Bhaumik SR, Chary KV, Govil G, Liu K, Howard FB, Miles HT (2002) NMR structureof a parallel-stranded DNA duplex at atomic resolution. Nucleic Acids Res 30:1500–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patikoglou GA, Kim JL, Sun L, Yang SH, Kodadek T, Burley SK (1999) TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev 13:3217–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26:250–255

    Article  CAS  Google Scholar 

  • Plasser F, Wormit M, Dreuw A (2014) New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J Chem Phys 141:13

    Google Scholar 

  • Privalov PL, Robinson CC (2017) Role of water in the formation of macromolecular structures. Eur Biophys J 46:203–224

    Article  CAS  PubMed  Google Scholar 

  • Ratner M (1999) Electronic motion in DNA. Nature 397:480–481

    Article  CAS  PubMed  Google Scholar 

  • Riek R (2001) Characterization of hydrogen bond lengths in Watson–Crick base pairs by cross-correlated relaxation. J Magn Reson 149:149–153

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Quiney HM (2017) Solvent effects on the excited state characteristics of adenine–thymine base pairs. RSC Adv 7:33426–33440

    Article  CAS  Google Scholar 

  • Sherrill CD (2010) Counterpoise correction and basis set superposition error. School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Shukla MK, Leszczynski J (2002) A theoretical investigation of excited-state properties of the adenine–uracil base pair. J Phys Chem A106:1011–1018

    Article  Google Scholar 

  • Silva AM, Chakrabarty S, Chaudhuri P (2015) Hydrogen-bonded glycine–HCN complexes in gas phase: structure, energetics, electric properties and cooperativity. Mol Phys 113:447–462

    Article  Google Scholar 

  • Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  • Sivakova S, Rowan SJ (2005) Nucleobases as supramolecular motifs. Chem Soc Rev 34:9–21

    Article  CAS  PubMed  Google Scholar 

  • Song J, Ng SC, Tompa P, Lee KAW, Chan HS (2013) Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. Comput Biol 9:1–12

    Google Scholar 

  • Sponer J, Leszczynski J, Hobza P (1996) Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. J Biomol Struct Dyn 14:117–135

    Article  CAS  PubMed  Google Scholar 

  • Sponer J, Leszczynski J, Hobza P (2001) Hydrogen bonding, stacking and cation binding of DNA bases. J Mol Struct (Theochem) 573:43–53

    Article  CAS  Google Scholar 

  • Stauffer MT (2016) Applications of molecular spectroscopy to current research in the chemical and biological sciences. InTechopen, Rijeka

    Book  Google Scholar 

  • Tawada Y, Suneda TT, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  PubMed  Google Scholar 

  • Tsolakidis A, Kaxiras E (2005) A TDDFT study of the optical response of DNA bases, base pairs, and their tautomers in the gas phase. J Phys Chem A 109:2373–2380

    Article  CAS  PubMed  Google Scholar 

  • Varsano D, Felice RD, Marques MAL, Rubio A (2005) A TDDFT study of the excited states of DNA bases and their assemblies. J Phys Chem B 110:7129–7138

    Article  Google Scholar 

  • Wang W, Zhang Y, Ji B, Tian A (2011) On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes. J Chem Phys 134:1–5

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–753

    Article  CAS  PubMed  Google Scholar 

  • Yanson IK, Teplitsky AB, Sukhodub LF (1979) Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers 18:1149–1170

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ranjan Sutradhar acknowledges the financial support provided by DST as INSPIRE fellowship (IF160533) and Sumana Gop acknowledges the financial support provided by DST as INSPIRE fellowship (IF170013) and Sumana Chakraborty would like to acknowledge the financial support provided by SERB, DST, India (SERB Project no. SR/FTP/PS-073/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Sutradhar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3049 kb)

Supplementary material 2 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, R., Gop, S., Chakraborty, S. et al. How the stability, reactivity and optical response of the protonated base pairs differ with other biologically important adenine–thymine pairs: a DFT and TD-DFT approach. Chem. Pap. 75, 2159–2172 (2021). https://doi.org/10.1007/s11696-020-01474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01474-x

Keywords

Navigation