Skip to main content

Advertisement

Log in

Tweaking EMT and MDR dynamics to constrain triple-negative breast cancer invasiveness by EGFR and Wnt/β-catenin signaling regulation

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Due to a lack of effective targeted therapies, patients with metastatic triple-negative breast cancer (TNBC) have poor clinical outcomes. Epithelial to mesenchymal transition (EMT) is known to contribute to cancer progression, invasiveness and multidrug resistance (MDR). There is a strong correlation between various drug efflux mechanisms, cancer stem cells and tumor microenvironments, which in turn is synchronized by complex signaling crosstalk between EMT and MDR. We hypothesize that combining these regulatory connections with targeted combinatorial therapies may be an effective approach to annihilate the progression/metastasis of TNBC.

Methods

AlamarBlue assays were used to depict TNBC cell viability, whereas flow cytometry was used to detect apoptotic cell populations, reactive-oxygen species (ROS) levels as well as mitochondrial depolarization. qRT-PCR, Western blotting and confocal microscopy were used to provide molecular-level information of the genes and proteins involved.

Results

Our initial analyses showed that targeting EGFR by either erlotinib (EGFR inhibitor) or lapatinib (EGFR/HER-2 inhibitor) alone was ineffective against TNBC. Interestingly, we subsequently found that a low dose of lapatinib did act as a substrate rather than as an inhibitor facilitating EMT and MDR, leading to metastasis. Additional gene expression studies indicated that co-targeting the EGFR and Wnt/β-catenin pathways with lapatinib and XAV939 (a tankyrase inhibitor) promoted mesenchymal to epithelial transition (MET). Application of these inhibitors led to a 5.62-fold increase in the epithelial marker E-cadherin and a 3.33-fold decrease in the stemness marker EpCAM, with concomitant 1.5-fold and 3.22-fold reductions in the ABC transporters ABCB1 and ABCG2, respectively. These co-targeting effects resulted in overcoming EMT and MDR, which in turn was highlighted by reduced levels of pEGFR, pAKT, pMAPK, pSTAT-3, pGSK-3β and β-catenin.

Conclusions

Our data indicate that the synergistic action of targeting both the EGFR and Wnt/β-catenin signaling pathways in TNBC cells may open up new avenues for combatting this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.M. Lee, S. Dedhar, R. Kalluri, E.W. Thompson, The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973–981 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. V.L. Battula, K.W. Evans, B.G. Hollier, Y. Shi, F.C. Marini, A. Ayyanan, Ry. Wang, C. Brisken, R. Guerra, M. Andreeff, Epithelial-mesenchymal transition‐derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Lamouille, J.X.R. Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196 (2014)

  4. J.P. Thiery, H. Acloque, R.Y. HuangM.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. G.V. Røsland, S.E. Dyrstad, D. Tusubira, R. Helwa, T.Z. Tan, M.L. Lotsberg, I.K. Pettersen, A. Berg, C. Kindt, F. Hoel, Epithelial to mesenchymal transition (EMT) is associated with attenuation of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC. Cancer Metab. 7, 6 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells. Nature 432, 396 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R.-R. BegicevicM. Falasca, ABC transporters in cancer stem cells: Beyond chemoresistance. Int. J. Mol. Sci. 18, 2362 (2017)

    Article  CAS  Google Scholar 

  9. G. Palma, G. Frasci, A. Chirico, E. Esposito, C. Siani, C. Saturnino, C. Arra, G. Ciliberto, A. GiordanoM, D’Aiuto, Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6, 26560 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  10. J.M. Dolle, J.R. Daling, E. White, L.A. Brinton, D.R. Doody, P.L. PorterK.E. Malone, Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidem. Biomar. 18, 1157–1166 (2009)

    Article  Google Scholar 

  11. J.S. Lee, S.E. Yost, S. Blanchard, D. Schmolze, H.H. Yin, R. Pillai, K. Robinson, A. Tang, N. Martinez, J. Portnow, Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 21, 119 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  12. H.S. Park, M.H. Jang, E.J. Kim, H.J. Kim, H.J. Lee, Y.J. Kim, J.H. Kim, E. Kang, S.-W. Kim, I.A. Kim, High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod. Pathol. 27, 1212 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. A. Simiczyjew, E. Dratkiewicz, M. Van Troys, C. Ampe, I. Styczeń, D. Nowak, Combination of EGFR inhibitor Lapatinib and MET inhibitor Foretinib inhibits migration of triple negative breast cancer cell lines. Cancers (Basel)10, 335 (2018)

    Article  CAS  Google Scholar 

  14. A. Gangrade, V. Pathak, C. Augelli-Szafran, H.-X. Wei, P. Oliver, M.S.D. Buchsbaum, Preferential inhibition of Wnt/β-Catenin signaling by novel Benzimidazole compounds in triple-negative breast cancer. Int. J. Mol. Sci. 19, 1524 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  15. T.H.C. Li, Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol. Cancer 9, 236 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  16. S.-M.A. Huang, Y.M. Mishina, S. Liu, A. Cheung, F. Stegmeier, G.A. Michaud, O. Charlat, E. Wiellette, Y. Zhang, S. Wiessner, Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. A. Walzl, C. Unger, N. Kramer, D. Unterleuthner, M. Scherzer, M. Hengstschläger, D. Schwanzer-Pfeiffer, H. Dolznig, The resazurin reduction assay can distinguish cytotoxic from cytostatic compounds in spheroid screening assays. J. Biomol. Screen. 19, 1047–1059 (2014)

    Article  PubMed  CAS  Google Scholar 

  18. T.-C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984)

    Article  CAS  PubMed  Google Scholar 

  19. C.R.I. Nicoletti, Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. A.I.M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006)

    Article  PubMed  CAS  Google Scholar 

  21. J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. X. Rao, X. Huang, Z.Z.X. Lin, An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 3, 71 (2013)

    Google Scholar 

  23. H. Wu, S. Wang, D. Weng, H. Xing, X. Song, T. Zhu, X. Xia, Y. Weng, XuL. Meng, Reversal of the malignant phenotype of ovarian cancer A2780 cells through transfection with wild-type PTEN gene. Cancer Lett. 271, 205–214 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. W.-L. Chen, K.-T. Kuo, T.-Y. Chou, C.-L. Chen, C.-H. Wang, Y.-H. Wei, L.-S. Wang, The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis. BMC Cancer 12, 273 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B. Bao, C. Mitrea, P. Wijesinghe, L. Marchetti, E. Girsch, R.L. Farr, J.L. Boerner, R. Mohammad, G. Dyson, S.R. Terlecky, Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity. Sci. Rep. 7, 44125 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  26. A.S. Nunes, A.S. Barros, E.C. Costa, A.F. MoreiraI, J. Correia, 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol. Bioeng. 116, 206–226 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. B.R. Topacio, E. Zatulovskiy, S. Cristea, S. Xie, C.S. Tambo, S.M. Rubin, J. Sage, M. Kõivomägi, J.M. Skotheim, Cyclin D-Cdk4,6 drives cell-cycle progression via the Retinoblastoma protein’s C-terminal helix. Mol. Cell 74, 758-770.e754 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Redza-Dutordoir, A.D. Averill-Bates, Activation of apoptosis signalling pathways by reactive oxygen species. BBA-Mol. Cell Res. 1863, 2977–2992 (2016)

    CAS  Google Scholar 

  29. J.M. Matés, F.M. Sánchez-Jiménez, Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell. Biol. 32, 157–170 (2000)

  30. A. Perelman, C. Wachtel, M. Cohen, S. Haupt, H. Shapiro, A. Tzur, JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 3, e430 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Pećina-Šlaus, Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 3, 17 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A.S.S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 68, 3033–3046 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. K.M. Mrozik, O.W. Blaschuk, C.M. Cheong, A.C.W. Zannettino, K. Vandyke, N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 18, 939 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M.-H. Wang, R. Sun, X.-M. Zhou, M.-Y. Zhang, J.-B. Lu, Y. Yang, L.-S. Zeng, X.-Z. Yang, L. Shi, R.-W. Xiao, Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway. Cell Death Dis. 9, 2 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. U.M. Moll, O. Petrenko, The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001-1008 (2003)

  36. W.S.L. Tang, MDM2 increases drug resistance in cancer cells by inducing EMT independent of p53. Curr. Med. Chem. 23, 4529–4539 (2016)

    Article  PubMed  CAS  Google Scholar 

  37. Z.C. Nwosu, M.P. Ebert, S.D.C. Meyer, Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol. Cancer 15, 71 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. C. Dai, A.K. Tiwari, C.-P. Wu, X. Su, S.-R. Wang, D. Liu, C.R. Ashby, Y. Huang, R.W. Robey , Y.-J. Liang, Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 68, 7905–7914 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D. Fang, D. Hawke, Y. Zheng, Y. Xia, J. Meisenhelder, H. Nika, G.B. Mills, R. Kobayashi, T. Hunter, Z. Lu, Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J. Biol. Chem. 282, 11221–11229 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. C. Garay, G. Judge, S. Lucarelli, S. Bautista, R. Pandey, T. Singh, C.N. Antonescu, Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol. Biol. Cell 26, 3504–3519 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Wang, S. Pennock, X.C.Z. Wang, Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol. Cell. Biol. 22, 7279 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Q. Ryan, A. Ibrahim, M.H. Cohen, J. Johnson, C. Ko, R. Sridhara, R. Justice, R. Pazdur, FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 13, 1114–1119 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. N.K.R. Kurzrock, Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 62, 50–60 (2018)

    Article  PubMed  CAS  Google Scholar 

  44. M. Kahn, Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014)

    Article  CAS  Google Scholar 

  45. A.I. MinchintonI.F. Tannock, Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006)

    Article  CAS  Google Scholar 

  46. E.C. Costa, A.F. Moreira, D. de Melo-Diogo, V.M. Gaspar, M.P. Carvalho, I.J. Correia, 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol. Adv. 34, 1427–1441 (2016)

    Article  PubMed  Google Scholar 

  47. O. Tetsu, F. McCormick, β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. I. Hadžisejdić, E. Mustać, N. Jonjić, M. Petković, B. Grahovac, Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Mod. Pathol. 23, 392–403 (2010)

    Article  PubMed  CAS  Google Scholar 

  49. C.P. Masamha, D.M. Benbrook, Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of Cyclin E2 in ovarian cancer cells. Cancer Res. 69, 6565 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. Y. Jiang, X.W.D. Hu, Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death Dis. 8, e2815–e2815 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H.-R. Teppo, Y. Soini, P. Karihtala, Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid. Med. Cell. Longev. 2017, 1485283 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. K.M. Aird, J.L. Allensworth, I. Batinic-Haberle, H.K. Lyerly, M.W. Dewhirst, G.R. Devi, ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res. Treat. 132, 109–119 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. J. Chandra, A.S.S. Orrenius, Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol. Med. 29, 323–333 (2000)

    Article  CAS  Google Scholar 

  54. R. Nahta, L.X. Yuan, Y. Du, F.J. Esteva, Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Mol. Cancer Ther. 6, 667–674 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. X.-H. Tian, W.-J. Hou, Y. Fang, J. Fan, H. Tong, S.-L. Bai, Q. Chen, H. Xu, Y. Li, XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 32, 100 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. C.-Y. Liu, M.-H. Hu, C.-J. Hsu, C.-T. Huang, D.-S. Wang, W.-C. Tsai, Y.-T. Chen, C.-H. Lee, P.-Y. Chu, C.-C. Hsu, Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget 7, 9135 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  57. K.B. Yin, The Mesenchymal-Like Phenotype of the MDA-MB-231 Cell Line. In: M. Gunduz, E. Gunduz ed. Breast Cancer - Focusing Tumor Microenvironment, Stem cells and Metastasis. IntechOpen 385–402 (2011). https://doi.org/10.5772/20666. Available from:https://www.intechopen.com/books/breast-cancer-focusing-tumor-microenvironment-stem-cells-and-metastasis/the-mesenchymal-like-phenotype-of-themda-mb-231-cell-line

  58. Y.-C. Hsiao, M.-H. Yeh, Y.-J. Chen, J.-F. Liu, C.-H. Tang, W.-C. Huang, Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget 6, 37965 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  59. Z.C. Hartman, G.M. Poage, P. Den Hollander, A. Tsimelzon, J. Hill, N. Panupinthu, Y. Zhang, A. Mazumdar, S.G. Hilsenbeck, G.B. Mills, Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73, 3470–3480 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. J.W. Polli, J.E. Humphreys, K.A. Harmon, S. Castellino, M.J. O’mara, K.L. Olson, L.S. John-Williams, K.M. Koch, C.J. Serabjit-Singh, The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl) oxy] phenyl}-6-[5-({[2-(methylsulfonyl) ethyl] amino} methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab. Disposition 36, 695–701 (2008)

    Article  CAS  Google Scholar 

  61. X. He, J. Wang, W. Wei, M. Shi, B. Xin, T.Z.X. Shen, Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol. Ther. 17, 188–198 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Q.-Q. Li, J.-D. Xu, W.-J. Wang, X.-X. Cao, Q. Chen, F. Tang, Z.-Q. Chen, X.-P. Liu, Z.-D. Xu, Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin. Cancer. Res. 15, 2657–2665 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. G.V. Vijay, N. Zhao, P. Den Hollander, M.J. Toneff, R. Joseph, M. Pietila, J.H. Taube, T.R. Sarkar, E. Ramirez-Pena, S.J. Werden, GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res. 21, 37 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  64. G. Civenni, T. Holbro, N.E. Hynes, Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep. 4, 166–171 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. P.W.Z. Wang, Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel)9, 52 (2017)

    Article  CAS  Google Scholar 

  66. M.K. Ghosh, P. Sharma, P.C. Harbor, S.O. RahamanS.J. Haque, PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 24, 7290 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. J. Gyamfi, Y.-H. Lee, M. Eom, J. Choi, Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci. Rep. 8, 8859 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. W.-J. Jeong, E.J. Ro, K.-Y. Choi, Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis. Oncol. 2, 1–10 (2018)

    CAS  Google Scholar 

  69. M.A. Fragoso, A.K. Patel, R.E. Nakamura, H. Yi, K. Surapaneni, A.S. Hackam, The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One 7, e46892 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. N.T. Georgopoulos, L.A. Kirkwood, J. Southgate, A novel bidirectional positive-feedback loop between Wnt–β-catenin and EGFR–ERK plays a role in context-specific modulation of epithelial tissue regeneration. J. Cell Sci. 127, 2967–2982 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. C. Metcalfe, C. Mendoza-Topaz, J.M.M. Bienz, Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J. Cell Sci. 123, 1588–1599 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. S.J. Grille, A. Bellacosa, J. Upson, A.J. Klein-Szanto, F. Van Roy, W. Lee-Kwon, M. Donowitz, P.N. Tsichlis, L. Larue, The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 63, 2172–2178 (2003)

    CAS  PubMed  Google Scholar 

  73. H. Zheng, W. Li, Y. Wang, Z. Liu, Y. Cai, T. Xie, M. Shi, Z. Wang, B. Jiang, Glycogen synthase kinase-3 beta regulates Snail and β-catenin expression during Fas-induced epithelial–mesenchymal transition in gastrointestinal cancer. Eur. J. Cancer 49, 2734–2746 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the DBT program Support Facility, Centre for Nanotechnology, Department of Electronics and Information Technology grant, and the Central Instruments Facility (CIF), IIT Guwahati, India. The authors also acknowledge Ms. Satakshi Hazra for her help in editing the manuscript.

Funding

The study was supported by grants from the Department of Biotechnology, Government of India (BT/PR13560/COE/34/44/2015, and BT/PR 25095/NER/95/1011/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sankar Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4.02 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shome, R., Ghosh, S.S. Tweaking EMT and MDR dynamics to constrain triple-negative breast cancer invasiveness by EGFR and Wnt/β-catenin signaling regulation. Cell Oncol. 44, 405–422 (2021). https://doi.org/10.1007/s13402-020-00576-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00576-8

Keywords

Navigation