Skip to main content
Log in

Characterization of the Collimation of an Atomic Beam with a Monochromatic Quasi-resonant Laser

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, we measure the collimation of an atomic beam of strontium that emerges from an array of microtubes installed at the output of an atomic oven, through the characterization of the beam fluorescence caused by a monochromatic laser beam close to resonance with a strontium electronic transition, as a function of the transverse position at the atomic beam and the light detuning. We develop a theoretical model to obtain the total fluorescence rate as a function of the collimation of the atomic beam, the temperature of the atomic oven, and the laser frequency. Collision effects between the atoms, and the atoms with the recipient walls, are included to make the model realistic. The method and theory developed are useful to laboratories willing to implement such atomic sources, for experiments with atomic beams or cold atomic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  2. P.D. Lett, W.D. Phillips, S.L. Rolston, C.E. Tanner, R.N. Watts, C.I. Westbrook, Optical molasses. JOSA B. 6, 2084 (1989)

    Article  ADS  Google Scholar 

  3. W.D. Phillips, H. Metcalf, Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596 (1982)

    Article  ADS  Google Scholar 

  4. E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987)

    Article  ADS  Google Scholar 

  5. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. JOSA B. 11, 2023 (1989)

    Article  ADS  Google Scholar 

  6. A.M. Steane, C.J. Foot, Laser cooling below the Doppler limit in a magneto-optical trap. EPL. 14, 231 (1991)

    Article  ADS  Google Scholar 

  7. C. h. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  8. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science. 269, 198 (1995)

    Article  ADS  Google Scholar 

  9. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. Van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  10. A.G. Truscott, K.E. Strecker, W.I. McAlexander, G.B. Partridge, R.G. Hulet, Observation of Fermi pressure in a gas of trapped atoms. Science. 291, 2570 (2001)

    Article  ADS  Google Scholar 

  11. I.B. Spielman, W.D. Phillips, J.V. Porto, Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007)

    Article  ADS  Google Scholar 

  12. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016)

    Article  ADS  Google Scholar 

  13. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder. Nature. 453, 891 (2008)

    Article  ADS  Google Scholar 

  14. W. Guerin, M.O. Araújo, R. Kaiser, Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016)

    Article  ADS  Google Scholar 

  15. K.L. Moore, T.P. Purdy, K.W. Murch, S. Leslie, S. Gupta, D.M. Stamper-Kurn, Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments. Rev. Sci. Instrum. 76, 023106 (2005)

    Article  ADS  Google Scholar 

  16. H. Brand, B. Nottbeck, H.H. Schulz, A. Steudel, Laser-atomic-beam spectroscopy in the samarium I spectrum. J. Phys. B: Atom. Molecul. Phys. 11(4), L99 (1978)

    Article  ADS  Google Scholar 

  17. J.E. Thomas, P.R. Hemmer, S h Ezekiel, JrC. C. Leiby, R.H. Picard, C.R. Willis, Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam. Phys. Rev. Lett. 48, 867 (1982)

    Article  ADS  Google Scholar 

  18. D.J. Glaze, H. Hellwig, D.W. Allan, S. Jarvis, NBS-4 and NBS-6: The NBS primary frequency standards. Metrologia. 13(1), 17 (1977)

    Article  ADS  Google Scholar 

  19. J.P. Gordon, H.J. Zeiger, C.h.H. Townes, The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264 (1955)

    Article  ADS  Google Scholar 

  20. H.M. Goldenberg, D. Kleppner, N.F. Ramsey, Atomic hydrogen maser. Phys. Rev. Lett. 5, 361 (1960)

    Article  ADS  Google Scholar 

  21. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 169 (1972)

    Article  ADS  Google Scholar 

  22. R.E. Grove, F.Y. Wu, S. Ezekiel, Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field. Phys. Rev. A. 15, 227 (1977)

    Article  ADS  Google Scholar 

  23. C.B. Lucas, The production of intense atomic beams. Vacuum. 23, 395 (1973)

    Article  ADS  Google Scholar 

  24. P.H. Moriya, M.O. Araújo, F. Todão, M. Hemmerling, H. Keßler, R.F. Shiozaki, R. Celistrino Teixeira, Ph.W. Courteille, Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps. J. Phys. Commun. 2, 125008 (2018)

    Article  Google Scholar 

  25. Fritz Riehle, Frequency Standards: Basics and Applications. Wiley (2006)

  26. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Vol. 1. Higher Transcendental Functions (Krieger, New York, 1981), pp. 30–31

    MATH  Google Scholar 

  27. R.A. Salinas Sílvio, Introdução à física estatística. Edusp (1997)

Download references

Acknowledgments

The authors would like to thank Cleber Renato Mendonça and Jonathas de Paula Siqueira, from the Photonics group at IFSC-USP, for cutting the microtubes.

Funding

The authors acknowledge the funding through FAPESP projects 2013/04162-5, FAPESP 2018/00221-0, and FAPESP 2015/25146-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Celistrino Teixeira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P.G.S. Dias and M.A.F. Biscassi contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, P.G.S., Biscassi, M.A.F., Magnani, P.H.N. et al. Characterization of the Collimation of an Atomic Beam with a Monochromatic Quasi-resonant Laser. Braz J Phys 51, 329–338 (2021). https://doi.org/10.1007/s13538-020-00837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00837-9

Keywords

Navigation