Skip to main content
Log in

Ionospheric TEC prediction using Long Short-Term Memory deep learning network

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper, the prediction model for ionospheric total electron content (TEC) based on Long Short-Term Memory (LSTM) deep learning network and its performance are discussed. The input parameters of the model are previous values of daily TEC, solar radio flux at 10.7 cm parameter of 81 day moving average (\(\overline{F107\_81}\)), sunspot number (SSN), geomagnetic Kp index, and disturbance storm time (Dst) index, and the outputs are TEC values for the target day. TEC data from January 1, 2001 to December 31, 2016 were used in this study. The dataset almost covers most of the years of the last two solar cycles (23, 24), and it is separated as 81.3% for training, 6.2% for validation, and 12.5% for testing. At BJFS IGS station (39.61° N, 115.89° E), LSTM yielded good TEC estimates with an RMSE of 4.07 TECU in 2001, it was 33% and 48% lower than the RMSE observed in TEC prediction using BP and IRI-2016 models, respectively. In the year of low solar activity (2016), the RMSE predicted by LSTM was 1.78 TECU, it provided 30% and 54% lower RMSE for TEC prediction than for BP and IRI-2016 models. Under the condition of magnetic storm, the LSTM TEC predictions are more consistent with the corresponding IGS Global Ionospheric Maps (GIMs) TEC than TEC predictions by BP and IRI-2016 models. LSTM can better grasp the influence of different external conditions on TEC. Seventeen grid points along 120° E meridian in latitude range from 80° S to 80° N were selected to further study the performance of LSTM model in different latitude. Results show that the prediction accuracy of LSTM is better than that of BP at different latitudes, especially at low latitudes. The performances of the two models are highly correlated with latitude and solar activity, and are both better than that of IRI-2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the IGS for providing the research datasets and the NASA’s Goddard Space Flight Center for the space weather condition indices obtained using OMNIWeb interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Li, S., Li, L. et al. Ionospheric TEC prediction using Long Short-Term Memory deep learning network. Astrophys Space Sci 366, 3 (2021). https://doi.org/10.1007/s10509-020-03907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03907-1

Keywords

Navigation