Skip to main content
Log in

Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the dynamic response of buried fluid-conveying pipelines subjected to blast loading using the Love shell theory has been investigated. The fluid is considered as ideal fluid, and the velocity potential is used to describe the fluid pressure acting on the pipeline. The governing equations of the buried fluid-conveying pipelines are derived through Hamilton’s principle. The modal superposition method and the Newmark integral method are used to analyze the dynamic response of the pipelines under blast loading. Results show that the displacement amplitudes of the pipelines are larger in the soil with a higher acoustic impedance. The Winkler foundation can enhance the stiffness of the pipelines. Moreover, the increase in the scaled distance leads to the decrease in the displacement amplitudes of the pipelines. The increase in the fluid velocity results in the rise of the displacement amplitudes of the pipelines. In addition, the maximum displacement increases first and then decreases with the increase in length-to-radius ratio of the pipelines. With the increase in thickness-to-radius ratio, the maximum displacement of the pipelines tends to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

E :

Young’s modulus of the pipeline

f :

Coupling factor of the explosion energy with soil

h :

The thickness of the pipeline

k w :

The parameter of the Winkler foundation

L :

The length of the pipeline

m :

The axial half-wave number

M TNT :

The TNT equivalent charge weight

n :

The circumferential waves number

R :

The middle-surface radius of the pipeline

R s :

The distance from the center of the explosion to the pipeline

T d :

The blast time duration

U :

The axial undisturbed flow velocity

Z :

The acoustic impedance of the soil

α :

The ratio of the equivalent uniform pressure to the maximum pressure on the pipeline

κ :

An attenuation coefficient

ν :

Poisson’s ratio of the pipeline

ρ :

Density of the pipeline

ρ f :

The density of fluid

References

  1. Hashash, Y.M.; Hook, J.J.; Schmidt, B.; John, I.; Yao, C.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001)

    Article  Google Scholar 

  2. Choo, Y.W.; Abdoun, T.H.; O’Rourke, M.J.; Ha, D.: Remediation for buried pipeline systems under permanent ground deformation. Soil Dynam. Earthq. Eng. 27(12), 1043–1055 (2007)

    Article  Google Scholar 

  3. Tsinidis, G.; Di Sarno, L.; Sextos, A.; Furtner, P.: Seismic fragility of buried steel natural gas pipelines due to axial compression at geotechnical discontinuities. Bull. Earthq. Eng. 18(3), 837–906 (2020)

    Article  Google Scholar 

  4. Tsinidis, G.; Di Sarno, L.; Sextos, A.; Furtner, P.: Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities. Soil Dynam. Earthq. Eng. 131, 106030 (2020)

    Article  Google Scholar 

  5. Mokhtari, M.; Nia, A.A.: A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Arch. Civil Mech. Eng. 15(3), 668–679 (2015)

    Article  Google Scholar 

  6. Zhang, L.; Liang, Z.; Zhang, J.: Mechanical response of a buried pipeline to explosion loading. J. Fail. Anal. Prev. 16(4), 576–582 (2016)

    Article  Google Scholar 

  7. Rushton, N.; Schleyer, G.; Clayton, A.; Thompson, S.: Internal explosive loading of steel pipes. Thin-Walled Struct. 46(7–9), 870–877 (2008)

    Article  Google Scholar 

  8. Song, K.; Long, Y.; Ji, C.; Gao, F.; Chen, H.: Experimental and numerical studies on the deformation and tearing of X70 pipelines subjected to localized blast loading. Thin-Walled Structures 107, 156–168 (2016)

    Article  Google Scholar 

  9. Kanarachos, A.; Provatidis, C.: Determination of buried structure loads due to blast explosions. WIT Transactions on The Built Environment 35, 95–104 (1970)

  10. Nourzadeh, D.; Khorshid, S.; Takada, S.; Bargi, K.: Analytical proposal to damage assessment of buried continuous pipelines during external blast loading. Int. J. Civil Environ. Stru. Constr. Archit. Eng. 5(11), 515–520 (2011)

    Google Scholar 

  11. Abedi, A.S.; Hataf, N.; Ghahramani, A.: Analytical solution of the dynamic response of buried pipelines under blast wave. Int. J. Rock Mech. Min. Sci. 88, 301–306 (2016)

    Article  Google Scholar 

  12. Kouretzis, G.P.; Bouckovalas, G.D.; Gantes, C.J.: Analytical calculation of blast-induced strains to buried pipelines. Int. J. Impact Eng 34(10), 1683–1704 (2007)

    Article  Google Scholar 

  13. Zhang, J.; Zhang, L.; Liang, Z.: Buckling failure of a buried pipeline subjected to ground explosions. Process Saf. Environ. Prot. 114, 36–47 (2018)

    Article  Google Scholar 

  14. Bang, B.; Park, H.-S.; Kim, J.-H.; Al-Deyab, S.S.; Yarin, A.L.; Yoon, S.S.: Simplified method for estimating the effect of a hydrogen explosion on a nearby pipeline. J. Loss Prev. Process Ind. 40, 112–116 (2016)

    Article  Google Scholar 

  15. Olarewaju, A.J.; Kameswara Rao, N.; Mannan, M.A.: Blast effects on underground pipes. Electron. J. Geotech. Eng. 15, 645–658 (2010)

    Google Scholar 

  16. Chen, C.-H.; Sheen, Y.-N.; Wang, H.-Y.: Case analysis of catastrophic underground pipeline gas explosion in Taiwan. Eng. Fail. Anal. 65, 39–47 (2016)

    Article  Google Scholar 

  17. Mokhtari, M.; Nia, A.A.: The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dynam. Earthq. Eng. 87, 52–62 (2016)

    Article  Google Scholar 

  18. Giannaros, E.; Kotzakolios, T.; Kostopoulos, V.: Blast response of composite pipeline structure using finite element techniques. J. Compos. Mater. 50(25), 3459–3476 (2016)

    Article  Google Scholar 

  19. Reddy, J.N.: Theory and analysis of elastic plates and shells. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  20. Amabili, M.; Pellicano, F.; Païdoussis, M.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow. J. Sound Vib. 228(5), 1103–1124 (1999)

    Article  Google Scholar 

  21. Ma, G.; Zhou, H.; Lu, Y.; Chong, K.: In-structure shock of underground structures: a theoretical approach. Eng. Struct. 32(12), 3836–3844 (2010)

    Article  Google Scholar 

  22. Army: U. Fundamentals of protective design for conventional weapons. Technical manual TM, 5–855 (1986)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11922205, 11672188 and 11672071), LiaoNing Revitalization Talents Program (Grant No. XLYC1807026) and the Fundamental Research Funds for the Central Universities (Grant No. N2005019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Appendix

Appendix

The coefficients of Eqs. (36), (37) and (38) are given by the following:

$$ k_{11} = \frac{{A_{11} m^{2} \pi^{2} }}{{L^{2} }} + \frac{{A_{66} n^{2} }}{{R^{2} }} $$
$$ k_{12} = - \frac{{A_{12} mn\pi }}{LR} - \frac{{A_{66} mn\pi }}{LR} $$
$$ k_{13} = - \frac{{B_{11} m^{3} \pi^{3} }}{{L^{3} }} - \frac{{B_{12} mn^{2} \pi }}{{LR^{2} }} - \frac{{2B_{66} mn^{2} \pi }}{{LR^{2} }} - \frac{{A_{12} m\pi }}{LR} $$
$$ k_{21} = - \frac{{A_{12} mn\pi }}{LR} - \frac{{A_{66} mn\pi }}{LR} $$
$$ k_{22} = \frac{{A_{66} m^{2} \pi^{2} }}{{L^{2} }} + \frac{{A_{22} n^{2} }}{{R^{2} }} $$
$$ k_{23} = \frac{{B_{22} n^{3} }}{{R^{3} }} + \frac{{A_{22} n}}{{R^{2} }} + \frac{{B_{12} m^{2} n\pi^{2} }}{{L^{2} R}} + \frac{{2B_{66} m^{2} n\pi^{2} }}{{L^{2} R}} $$
$$ k_{31} = - \frac{{B_{11} m^{3} \pi^{3} }}{{L^{3} }} - \frac{{B_{12} mn^{2} \pi }}{{LR^{2} }} - \frac{{2B_{66} mn^{2} \pi }}{{LR^{2} }} - \frac{{A_{12} m\pi }}{LR} $$
$$ k_{32} = \frac{{B_{22} n^{3} }}{{R^{3} }} + \frac{{A_{22} n}}{{R^{2} }} + \frac{{B_{12} m^{2} n\pi^{2} }}{{L^{2} R}} + \frac{{2B_{66} m^{2} n\pi^{2} }}{{L^{2} R}} $$
$$ \begin{aligned} k_{33} &= \frac{{D_{11} m^{4} \pi^{4} }}{{L^{4} }} + \frac{{D_{22} n^{4} }}{{R^{4} }} + \frac{{2B_{22} n^{2} }}{{R^{3} }} + \frac{{A_{22} }}{{R^{2} }} \\ &\quad+ \frac{{2D_{12} m^{2} n^{2} \pi^{2} }}{{L^{2} R^{2} }} + \frac{{4D_{66} m^{2} n^{2} \pi^{2} }}{{L^{2} R^{2} }} + \frac{{2B_{12} m^{2} \pi^{2} }}{{L^{2} R}} \end{aligned} $$

where

$$ \left[ {\begin{array}{*{20}c} {A_{ij} } \\ {B_{ij} } \\ {D_{ij} } \\ \end{array} } \right] = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} {Q_{ij} \left[ {\begin{array}{*{20}c} {z^{0} } \\ {z^{1} } \\ {z^{2} } \\ \end{array} } \right]} \;dz\;\;\left( {i,j = 1,2,6} \right)\;\;\left\{ {\begin{array}{*{20}c} {Q_{11} = Q_{22} = {E \mathord{\left/ {\vphantom {E {\left( {1 - \nu^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \nu^{2} } \right)}}} \\ {Q_{12} = Q_{21} = {{\nu E} \mathord{\left/ {\vphantom {{\nu E} {\left( {1 - \nu^{2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \nu^{2} } \right)}}} \\ {Q_{66} = {E \mathord{\left/ {\vphantom {E {2(1 + \nu )}}} \right. \kern-\nulldelimiterspace} {2(1 + \nu )}}} \\ \end{array} } \right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, X., Zhang, Y.F. & Wang, Y.Q. Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory. Arab J Sci Eng 46, 4883–4893 (2021). https://doi.org/10.1007/s13369-020-05282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05282-z

Keywords

Navigation