Skip to main content
Log in

Impact of Skin on the Movement of Nitrates in a Fractured Porous Media: Numerical Investigations

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to analyse the movement of nitrates and dissolved oxygen under the effect of denitrification in a fracture–matrix (F–M) system with skin formation. An implicit finite difference scheme is developed to model the coupled nonlinear partial differential equations. A varying grid is considered at the fracture–skin interface to handle the mass transfer from the fracture to the skin. Bacterial growth is taken into account in the fracture. The growth is affected by the presence of electron donor and electron acceptor. Sensitivity analysis is performed for various fluid flow velocities, skin diffusion coefficients, facture dispersion coefficients, skin porosities (S-P), fracture apertures and rock–matrix (R–M) porosities. Outcomes of this study indicate that the occurrence of skin enriches the transport of nitrates as compared to the absence of skin when denitrification process exists in the system. The low fluid velocity (0.5 m/day) reduces the transport of nitrates to a distance of 5 m, whereas a high fluid velocity (5.0 m/day) triggers up to a distance of 30 m from the fracture inlet. The higher skin diffusion coefficient enhances the migration of nitrates and dissolved oxygen compared to the lower skin diffusion coefficients. The fracture aperture variation from 100 to 500 μm increases the movement of nitrates and dissolved oxygen in fracture from 4 to 10 m, respectively. The variation of S-P from 25 to 75% also follows the same trend. Variation in R–M porosity has an insignificant effect on the movement of nitrates and dissolved oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sakram, G.; Kuntamalla, S.; Machender, G.; Dhakate, R.; Narsimha, A.: Multivariate statistical approach for the assessment of fluoride and nitrate concentration in groundwater from Zaheerabad area, Telangana state, India. Sustain. Water Resour. Manag. 5, 785–796 (2019)

    Google Scholar 

  2. Taneja, P.; Labhasetwar, P.; Nagarnaik, P.: Nitrate in drinking water and vegetables: intake and risk assessment in rural and urban areas of Nagpur and Bhandara districts of India. Environ. Sci. Pollut. Res. 26, 2026–2037 (2019)

    Google Scholar 

  3. Sullivan, T.P.; Gao, Y.; Reimann, T.: Nitrate transport in a karst aquifer: numerical model development and source evaluation. J. Hydrol. 573, 432–448 (2019)

    Google Scholar 

  4. Almasri, M.N.: Nitrate contamination of groundwater: a conceptual management framework. Environ. Impact Assess. Rev. 27, 220–242 (2007)

    Google Scholar 

  5. Suthar, S.; Bishnoi, P.; Singh, S.; Mutiyar, P.K.; Nema, A.K.; Patil, N.S.: Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J. Hazard. Mater. 171, 189–199 (2009)

    Google Scholar 

  6. Ravikanth, P.; Sundaraiah, R.; Sateesh, P.: Fluoride and nitrate contamination in the groundwater of Kalwakurthy area, Mahabubnagar district, Telangana state, India. Ind J Appl Res. (2015). https://doi.org/10.36106/ijar

    Article  Google Scholar 

  7. Ganesh, K.M.; Suryanarayana, G.; Janardhana, C.: GIS aided assessment of physico-chemical properties of the ground water from the villages of Puttaparthimandal, Anantapur district, Andhra Pradesh (India). Int J Adv Res. 3, 956–960 (2015)

    Google Scholar 

  8. Rezaei, M.; Nikbakht, M.; Shakeri, A.: Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Environ. Sci. Pollut. Res. 24, 15471–15487 (2017)

    Google Scholar 

  9. Teng, Y.; Zuo, R.; Xiong, Y.; Wu, J.; Zhai, Y.; Su, J.: Risk assessment framework for nitrate contamination in groundwater for regional management. Sci. Total Environ. 697, 134102 (2019)

    Google Scholar 

  10. Zhai, Y.; Zhao, X.; Teng, Y.; Li, X.; Zhang, J.; Wu, J.; Zuo, R.: Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ. Saf. 137, 130–142 (2017)

    Google Scholar 

  11. Wuttke, G.; Thober, B.; Lieth, H.: Simulation of nitrate transport in groundwater with a three-dimensional groundwater model run as a subroutine in an agroecosystem model. Ecol. Model. 57, 263–276 (1991)

    Google Scholar 

  12. Wu, Q.J.; Ward, A.D.; Workman, S.R.; Salchow, E.M.: Applying stochastic simulation techniques to a deterministic vadose zone solute transport model. J. Hydrol. 197, 88–110 (1997)

    Google Scholar 

  13. MacQuarrie, K.T.; Sudicky, E.A.; Robertson, W.D.: Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: II. Model application to a field site. J. Contam. Hydrol. 47, 85–104 (2001)

    Google Scholar 

  14. Molénat, J.; Gascuel-Odoux, C.: Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrol. Process. 16, 479–492 (2002)

    Google Scholar 

  15. Lalehzari, R.; Tabatabaei, S.-H.; Kholghi, M.: Simulation of nitrate transport and wastewater seepage in groundwater flow system. Int. J. Environ. Sci. Technol. 10, 1367–1376 (2013)

    Google Scholar 

  16. Zhu, Y.; Yang, J.; Ye, M.; Sun, H.; Shi, L.: Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport. Agric. Water Manag. 180, 35–49 (2017)

    Google Scholar 

  17. Jang, E.; He, W.; Savoy, H.; Dietrich, P.; Kolditz, O.; Rubin, Y.; Schüth, C.; Kalbacher, T.: Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation. Adv. Water Resour. 99, 38–52 (2017)

    Google Scholar 

  18. Sieczka, A.; Bujakowski, F.; Koda, E.: Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland. Geologos 24, 225–235 (2018)

    Google Scholar 

  19. Tosaka, H.; Yoshida, T.; Fukuoka, Y.; Tawara, Y.; Kato, K.: Numerical analysis of migration of nitrate ions in the groundwater system of lake Karachai area, Southern Ural, Russia. In: Kato, K., Konoplev, A., Kalmykov, S.N. (eds.) Behavior of Radionuclides in the Environment I, pp. 201–219. Springer, Singapore (2020)

    Google Scholar 

  20. Gusman, A.J.; Mariño, M.A.: Analytical modeling of nitrogen dynamics in soils and ground water. J. Irrig Drain. Eng 125, 330–337 (1999)

    Google Scholar 

  21. Ravikumar, V.; Vijayakumar, G.; Šim\uunek, J.; Chellamuthu, S.; Santhi, R.; Appavu, K.: Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model. Agric. Water Manag. 98, 1431–1440 (2011)

    Google Scholar 

  22. Botros, F.E.; Onsoy, Y.S.; Ginn, T.R.; Harter, T.: Richards equation–based modeling to estimate flow and nitrate transport in a deep alluvial vadose zone. Vadose Zone J. (2012). https://doi.org/10.2136/vzj2011.0145

    Article  Google Scholar 

  23. Wang, L.; Ye, M.; Lee, P.Z.; Hicks, R.W.: Support of sustainable management of nitrogen contamination due to septic systems using numerical modeling methods. Environ. Syst. Decis. 33, 237–250 (2013)

    Google Scholar 

  24. Berlin, M.; Suresh Kumar, G.; Nambi, I.M.: Numerical modelling on fate and transport of nitrate in an unsaturated system under non-isothermal condition. Eur. J. Environ. Civil Eng. 17, 350–373 (2013)

    Google Scholar 

  25. Berlin, M.; Kumar, G.S.; Nambi, I.M.: Numerical modeling on the effect of dissolved oxygen on nitrogen transformation and transport in unsaturated porous system. Environ. Model. Assess. 19, 283–299 (2014)

    Google Scholar 

  26. Berlin, M.; Kumar, G.S.; Nambi, I.M.: Numerical modeling of biological clogging on transport of nitrate in an unsaturated porous media. Environ. Earth Sci. 73, 3285–3298 (2015)

    Google Scholar 

  27. Berlin, M.; Kumar, G.S.; Nambi, I.M.: Numerical modelling on transport of nitrogen from wastewater and fertilizer applied on paddy fields. Ecol. Model. 278, 85–99 (2014)

    Google Scholar 

  28. Baram, S.; Couvreur, V.; Harter, T.; Read, M.; Brown, P.H.; Kandelous, M.; Smart, D.R.; Hopmans, J.W.: Estimating nitrate leaching to groundwater from orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modeling. Vadose Zone J. 15, 1–13 (2016)

    Google Scholar 

  29. Akbariyeh, S.; Bartelt-Hunt, S.; Snow, D.; Li, X.; Tang, Z.; Li, Y.: Three-dimensional modeling of nitrate-N transport in vadose zone: roles of soil heterogeneity and groundwater flux. J. Contam. Hydrol. 211, 15–25 (2018)

    Google Scholar 

  30. Berlin, M.; Kumar, G.S.: Numerical modelling on sorption kinetics of nitrogen species in wastewater-applied agricultural field. Appl. Water Sci. 8, 216 (2018)

    Google Scholar 

  31. Mokari, E.; Shukla, M.K.; Šim\uunek, J.; Fernandez, J.L.: Numerical modeling of nitrate in a flood-irrigated Pecan Orchard. Soil Sci. Soc. Am. J. 83, 555–564 (2019)

    Google Scholar 

  32. Rock, G.; Kupfersberger, H.: Modeling shallow groundwater nitrate concentrations by direct coupling of the vadose and the saturated zone. Environ. Earth Sci. 78, 283 (2019)

    Google Scholar 

  33. Huan, H.; Hu, L.; Yang, Y.; Jia, Y.; Lian, X.; Ma, X.; Jiang, Y.; Xi, B.: Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environ. Int. 137, 105532 (2020)

    Google Scholar 

  34. Grisak, G.E.; Pickens, J.-F.: Solute transport through fractured media: 1. The effect of matrix diffusion. Water Resour. Res. 16, 719–730 (1980)

    Google Scholar 

  35. Tang, D.H.; Frind, E.O.; Sudicky, E.A.: Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour. Res. 17, 555–564 (1981)

    Google Scholar 

  36. Sudicky, E.A.; Frind, E.O.: Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour. Res. 18, 1634–1642 (1982)

    Google Scholar 

  37. Moreno, L.; Neretnieks, I.: Fluid flow and solute transport in a network of channels. J. Contam. Hydrol. 14, 163–192 (1993)

    Google Scholar 

  38. Berkowitz, B.; Zhou, J.: Reactive solute transport in a single fracture. Water Resour. Res. 32, 901–913 (1996)

    Google Scholar 

  39. Bodin, J.; Delay, F.; De Marsily, G.: Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol. J. 11, 418–433 (2003)

    Google Scholar 

  40. Sekhar, M.; Suresh Kumar, G.; Misra, D.: Numerical modeling and analysis of solute velocity and macrodispersion for linearly and nonlinearly sorbing solutes in a single fracture with matrix diffusion. J. Hydrol. Eng. 11, 319–328 (2006)

    Google Scholar 

  41. Suresh Kumar, G.; Sekhar, M.; Misra, D.: Time-dependent dispersivity of linearly sorbing solutes in a single fracture with matrix diffusion. J. Hydrol. Eng. 13, 250–257 (2008)

    Google Scholar 

  42. Kumar, G.S.: Effect of sorption intensities on dispersivity and macro-dispersion coefficient in a single fracture with matrix diffusion. Hydrogeol. J. 16, 235–249 (2008)

    Google Scholar 

  43. Ma\lloszewski, P.; Zuber, A.: On the calibration and validation of mathematical models for the interpretation of tracer experiments in groundwater. Adv. Water Resour. 15, 47–62 (1992)

    Google Scholar 

  44. Kumar, G.S.; Sekhar, M.: Spatial moment analysis for transport of nonreactive solutes in fracture-matrix system. J. Hydrol. Eng. 10, 192–199 (2005)

    Google Scholar 

  45. Huang, Y.; Yu, Z.; Zhou, Z.; Wang, J.; Guo, Q.: Modeling flow and solute transport in fractured porous media at jinping I-hydropower station, China. J. Hydrol. Eng. 19, 05014007 (2014)

    Google Scholar 

  46. Yang, J.: Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures. J. Geophys. Res: Solid Earth. 117, B04106 (2012)

    Google Scholar 

  47. Natarajan, N.; Kumar, G.S.: Colloidal transport in a coupled sinusoidal fracture matrix system. Int. J. Geol. 4, 41–47 (2010)

    Google Scholar 

  48. Wu, Y.; Liu, Q.; Chan, A.H.; Liu, H.: Implementation of a time-domain random-walk method into a discrete element method to simulate nuclide transport in fractured rock masses. Geofluids. 2017, 5940380 (2017)

    Google Scholar 

  49. Sen, S.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.: Numerical simulation of the transport of a radionuclide chain in a rock medium. J. Environ. Radioact. 141, 115–122 (2015)

    Google Scholar 

  50. Natarajan, N.; Kumar, G.S.: Radionuclide and colloid co-transport in a coupled fracture-skin-matrix system. Colloids Surf. A 370, 49–57 (2010)

    Google Scholar 

  51. Wolfsberg, A.; Dai, Z.; Zhu, L.; Reimus, P.; Xiao, T.; Ware, D.: Colloid-facilitated plutonium transport in fractured tuffaceous rock. Environ. Sci. Technol. 51, 5582–5590 (2017)

    Google Scholar 

  52. Chopra, M.; Sunny, F.; Oza, R.B.: Numerical modeling of colloid-facilitated radionuclide decay chain transport in a coupled fracture–matrix system. Environ. Earth Sci. 75, 1300 (2016)

    Google Scholar 

  53. Geiger, S.; Emmanuel, S.: Non-Fourier thermal transport in fractured geological media. Water Resour. Res. 46, W07504 (2010)

    Google Scholar 

  54. Read, T.; Bour, O.; Bense, V.; Le Borgne, T.; Goderniaux, P.; Klepikova, M.V.; Hochreutener, R.; Lavenant, N.; Boschero, V.: Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing. Geophys. Res. Lett. 40, 2055–2059 (2013)

    Google Scholar 

  55. Ojha, C.S.P.; Surampalli, R.Y.; Sharma, P.K.; Joshi, N.: Breakthrough curves and simulation of virus transport through fractured porous media. J. Environ. Eng. 137, 731–739 (2011)

    Google Scholar 

  56. Natarajan, N.; Kumar, G.S.: Evolution of fracture permeability due to co-colloidal bacterial transport in a coupled fracture-skin-matrix system. Geosci. Front. 3, 503–514 (2012)

    Google Scholar 

  57. Natarajan, N.; Kumar, G.S.: Numerical modeling of bacteria facilitated contaminant transport in fractured porous media. Colloids Surf. A 387, 104–112 (2011)

    Google Scholar 

  58. Chambon, J.C.; Binning, P.J.; Jørgensen, P.R.; Bjerg, P.L.: A risk assessment tool for contaminated sites in low-permeability fractured media. J. Contam. Hydrol. 124, 82–98 (2011)

    Google Scholar 

  59. Valsala, R.; Govindarajan, S.K.: Mathematical modeling on mobility and spreading of BTEX in a discretely fractured aquifer system under the coupled effect of dissolution, sorption, and biodegradation. Transp. Porous Media 123, 421–452 (2018)

    MathSciNet  Google Scholar 

  60. Chen, M.-H.; Salama, A.; Sun, S.: The transport of nanoparticles in subsurface with fractured, anisotropic porous media: numerical simulations and parallelization. J. Comput. Appl. Math. 350, 1–18 (2019)

    MathSciNet  Google Scholar 

  61. Priddle, M.W.; Jackson, R.E.; Mutch, J.P.: Contamination of the Sandstone Aquifer of Prince Edward Island, Canada by Aldicarb and Nitrogen Residues. Groundw. Monit. Remediat. 9, 134–140 (1989). https://doi.org/10.1111/j.1745-6592.1989.tb01022.x

    Article  Google Scholar 

  62. Clawges, R.M.; Vowinkel, E.F.: Variables indicating nitrate contamination in bedrock aquifers, Newark Basin, New Jersey1. JAWRA J. Am. Water Resour. Assoc. 32, 1055–1066 (1996). https://doi.org/10.1111/j.1752-1688.1996.tb04073.x

    Article  Google Scholar 

  63. Levison, J.; Novakowski, K.: The impact of cattle pasturing on groundwater quality in bedrock aquifers having minimal overburden. Hydrogeol. J. 17, 559–569 (2009). https://doi.org/10.1007/s10040-008-0385-z

    Article  Google Scholar 

  64. Liu, C.-W.; Lin, C.-N.; Jang, C.-S.; Ling, M.-P.; Tsai, J.-W.: Assessing nitrate contamination and its potential health risk to Kinmen residents. Environ. Geochem. Health 33, 503–514 (2011). https://doi.org/10.1007/s10653-010-9367-x

    Article  Google Scholar 

  65. Iqbal, T.; Hiscock, K.M.: Finite-element model simulation of nitrate transport behaviour in saturated fractured porous media. Q. J. Eng. Geol.Hydrogeol. 44, 75–92 (2011)

    Google Scholar 

  66. Robinson, N.I.; Sharp Jr.; J.M.; Kreisel, I.: Contaminant transport in sets of parallel finite fractures with fracture skins. J. Contam. Hydrol. 31, 83–109 (1998)

    Google Scholar 

  67. Natarajan, N.; GS, K.: Numerical modeling of solute transport in a coupled sinusoidal fracture matrix system in the presence of fracture skin. Int J Energy Environ. 4, 99–104 (2010)

    Google Scholar 

  68. Natarajan, N.; Kumar, G.S.: Colloidal transport in a coupled fracture skin matrix system with sinusoidal fracture geometry. Int. J. Geol. 6, 1–7 (2012)

    Google Scholar 

  69. Natarajan, N.; Suresh Kumar, G.: Aperture variation and pressure change due to thermal stress and silica precipitation/dissolution accompanied by colloidal transport in a coupled fracture-skin-matrix system. Int. J. Energy Environ. 6, 1–15 (2012)

    Google Scholar 

  70. Natarajan, N.; Suresh Kumar, G.: Effect of fracture-skin formation in clay fractured porous media. ISH J. Hydraulic Eng. 20, 263–273 (2014)

    Google Scholar 

  71. Natarajan, N.; Suresh Kumar, G.: Numerical modelling of colloidal transport in fractured porous media with double layered fracture-skin. J. Geo-Eng. Sci. 1, 83–94 (2014)

    Google Scholar 

  72. Natarajan, N.; Kumar, G.S.: Spatial moment analysis of solute transport with Langmuir sorption in a fracture–skin–matrix coupled system. J. King Saud Univ.-Eng. Sci. 28, 157–164 (2016)

    Google Scholar 

  73. Natarajan, N.: Influence of various dispersion coefficients on contaminant migration in a fracture-matrix system with skin formation. Asian J. Water Environ. Pollut. 14, 91–101 (2017)

    Google Scholar 

  74. Natarajan, N.: Effect of time varying fracture skin porosity on the contaminant transport mechanism in fractured porous media. Songklanakarin J. Sci. Technol. 40(2), 448–456 (2018)

    Google Scholar 

  75. Nair, V.V.; Thampi, S.G.: Numerical modelling of colloid transport in sets of parallel fractures with fracture skin. Colloids Surf. A 364, 109–115 (2010)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Berlin.

Ethics declarations

Conflict of interest

Authors does not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, M., Natarajan, N., Vasudevan, M. et al. Impact of Skin on the Movement of Nitrates in a Fractured Porous Media: Numerical Investigations. Arab J Sci Eng 46, 4811–4824 (2021). https://doi.org/10.1007/s13369-020-05174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05174-2

Keywords

Navigation