Skip to main content

Advertisement

Log in

Regional Brain Tissue Displacement and Strain is Elevated in Subjects with Chiari Malformation Type I Compared to Healthy Controls: A Study Using DENSE MRI

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While the degree of cerebellar tonsillar descent is considered the primary radiologic marker of Chiari malformation type I (CMI), biomechanical forces acting on the brain tissue in CMI subjects are less studied and poorly understood. In this study, regional brain tissue displacement and principal strains in 43 CMI subjects and 25 controls were quantified using a magnetic resonance imaging (MRI) methodology known as displacement encoding with stimulated echoes (DENSE). Measurements from MRI were obtained for seven different brain regions—the brainstem, cerebellum, cingulate gyrus, corpus callosum, frontal lobe, occipital lobe, and parietal lobe. Mean displacements in the cerebellum and brainstem were found to be 106 and 64% higher, respectively, for CMI subjects than controls (p < .001). Mean compression and extension strains in the cerebellum were 52 and 50% higher, respectively, in CMI subjects (p < .001). Brainstem mean extension strain was 41% higher in CMI subjects (p < .001), but no significant difference in compression strain was observed. The other brain structures revealed no significant differences between CMI and controls. These findings demonstrate that brain tissue displacement and strain in the cerebellum and brainstem might represent two new biomarkers to distinguish between CMI subjects and controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams, A. L., H. J. Kuijf, M. A. Viergever, P. R. Luijten, and J. J. M. Zwanenburg. Quantifying cardiac-induced brain tissue expansion using DENSE. NMR Biomed. 32(2):e4050, 2019.

    PubMed  Google Scholar 

  2. Adams, A. L., M. A. Viergever, P. R. Luijten, and J. J. M. Zwanenburg. Validating faster DENSE measurements of cardiac-induced brain tissue expansion as a potential tool for investigating cerebral microvascular pulsations. Neuroimage 208:116466, 2020.

    PubMed  Google Scholar 

  3. Aletras, A. H., S. Ding, R. S. Balaban, and H. Wen. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J. Magn. Reson. 137(1):247–252, 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alperin, N., J. R. Loftus, C. J. Oliu, A. M. Bagci, S. H. Lee, B. Ertl-Wagner, B. Green, and R. Sekula. Magnetic resonance imaging measures of posterior cranial fossa morphology and cerebrospinal fluid physiology in Chiari malformation type I. Neurosurgery 75(5):515–522, 2014; (discussion 522).

    PubMed  PubMed Central  Google Scholar 

  5. Alperin, N., A. Sivaramakrishnan, and T. Lichtor. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J. Neurosurg. 103(1):46–52, 2005.

    PubMed  Google Scholar 

  6. Arnautovic, K. I., D. Muzevic, B. Splavski, and F. A. Boop. Association of increased body mass index with Chiari malformation Type I and syrinx formation in adults. J. Neurosurg. 119(4):1058–1067, 2013.

    PubMed  Google Scholar 

  7. Bolognese, P. A., A. Brodbelt, A. B. Bloom, and R. W. Kula. Chiari I malformation: opinions on diagnostic trends and controversies from a panel of 63 international experts. World Neurosurg. 130:e9–e16, 2019.

    PubMed  Google Scholar 

  8. Chavez, A., M. Roguski, A. Killeen, C. Heilman, and S. Hwang. Comparison of operative and non-operative outcomes based on surgical selection criteria for patients with Chiari I malformations. J. Clin. Neurosci. 21(12):2201–2206, 2014.

    PubMed  Google Scholar 

  9. Clarke, E. C., D. F. Fletcher, M. A. Stoodley, and L. E. Bilston. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46(11):1801–1809, 2013.

    PubMed  Google Scholar 

  10. Clarke, E. C., M. A. Stoodley, and L. E. Bilston. Changes in temporal flow characteristics of CSF in Chiari malformation type I with and without syringomyelia: implications for theory of syrinx development. J. Neurosurg. 118(5):1135–1140, 2013.

    PubMed  Google Scholar 

  11. Cousins, J., and V. Haughton. Motion of the cerebellar tonsils in the foramen magnum during the cardiac cycle. AJNR Am. J. Neuroradiol. 30(8):1587–1588, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dawes, B. H., R. A. Lloyd, J. M. Rogers, J. S. Magnussen, L. E. Bilston, and M. A. Stoodley. Cerebellar tissue strain in Chiari malformation with headache. World Neurosurg. 134:e74–e81, 2019.

    Google Scholar 

  13. Elster, A. D., and M. Chen. Chiari I malformations: clinical and radiologic reappraisal. Radiology 183(2):347–353, 1992.

    CAS  PubMed  Google Scholar 

  14. Eppelheimer, M. S., J. R. Houston, J. R. Bapuraj, R. Labuda, D. M. Loth, A. M. Braun, N. J. Allen, S. Heidari Pahlavian, D. Biswas, A. Urbizu, B. A. Martin, C. O. Maher, P. A. Allen, and F. Loth. A retrospective 2D morphometric analysis of adult female chiari type I patients with commonly reported and related conditions. Front Neuroanat. 12:2, 2018.

    PubMed  PubMed Central  Google Scholar 

  15. Fukuoka, T., Y. Nishimura, M. Hara, S. Haimoto, K. Eguchi, S. Yoshikawa, T. Wakabayashi, and H. J. Ginsberg. Chiari type 1 malformation-induced intracranial hypertension with diffuse brain edema treated with foramen magnum decompression: a case report. NMC Case Rep. J. 4(4):115–120, 2017.

    PubMed  PubMed Central  Google Scholar 

  16. Hofmann, E., M. Warmuth-Metz, M. Bendszus, and L. Solymosi. Phase-contrast MR imaging of the cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari I malformation. Am. J. Neuroradiol. 21(1):151, 2000.

    CAS  PubMed  Google Scholar 

  17. Houston, J. R., P. A. Allen, J. M. Rogers, M.-C. Lien, N. J. Allen, M. L. Hughes, J. R. Bapuraj, M. S. Eppelheimer, F. Loth, M. A. Stoodley, S. J. Vorster, and M. G. Luciano. Type I Chiari malformation, RBANS performance, and brain morphology: connecting the dots on cognition and macrolevel brain structure. Neuropsychology 33(5):725–738, 2019.

    PubMed  Google Scholar 

  18. Houston, J. R., M. S. Eppelheimer, S. H. Pahlavian, D. Biswas, A. Urbizu, B. A. Martin, J. R. Bapuraj, M. Luciano, P. A. Allen, and F. Loth. A morphometric assessment of type I Chiari malformation above the McRae line: a retrospective case-control study in 302 adult female subjects. J. Neuroradiol. 45(1):23–31, 2018.

    PubMed  Google Scholar 

  19. Iffrig, E., J. S. Wilson, X. Zhong, and J. N. Oshinski. Demonstration of circumferential heterogeneity in displacement and strain in the abdominal aortic wall by spiral cine DENSE MRI. J. Magn. Reson. Imaging 49(3):731–743, 2019.

    PubMed  Google Scholar 

  20. Kim, D., W. D. Gilson, C. M. Kramer, and F. H. Epstein. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 230(3):862–871, 2004.

    PubMed  Google Scholar 

  21. Lawrence, B. J., M. Luciano, J. Tew, R. G. Ellenbogen, J. N. Oshinski, F. Loth, A. P. Culley, and B. A. Martin. Cardiac-related spinal cord tissue motion at the foramen magnum is increased in patients with type I Chiari malformation and decreases postdecompression surgery. World Neurosurg. 116:e298–e307, 2018.

    PubMed  PubMed Central  Google Scholar 

  22. Leung, V., J. S. Magnussen, M. A. Stoodley, and L. E. Bilston. Cerebellar and hindbrain motion in Chiari malformation with and without syringomyelia. J. Neurosurg. Spine 24(4):546–555, 2016.

    PubMed  Google Scholar 

  23. Lloyd, R. A., D. F. Fletcher, E. C. Clarke, and L. E. Bilston. Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: a subject-specific computational modelling study. J. Biomech. 65:185–193, 2017.

    PubMed  Google Scholar 

  24. Meadows, J., M. Kraut, M. Guarnieri, R. I. Haroun, and B. S. Carson. Asymptomatic Chiari Type I malformations identified on magnetic resonance imaging. J. Neurosurg. 92(6):920–926, 2000.

    CAS  PubMed  Google Scholar 

  25. Milhorat, T. H., M. W. Chou, E. M. Trinidad, R. W. Kula, M. Mandell, C. Wolpert, and M. C. Speer. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44(5):1005–1017, 1999.

    CAS  PubMed  Google Scholar 

  26. Nwotchouang, B. S. T., M. S. Eppelheimer, P. Bishop, D. Biswas, J. M. Andronowski, J. R. Bapuraj, D. Frim, R. Labuda, R. Amini, and F. Loth. Three-dimensional CT morphometric image analysis of the clivus and sphenoid sinus in Chiari malformation type I. Ann. Biomed. Eng. 47(11):2284–2295, 2019.

    PubMed  Google Scholar 

  27. Nwotchouang, B. S. T., M. S. Eppelheimer, D. Biswas, S. H. Pahlavian, X. Zhong, J. N. Oshinski, D. L. Barrow, R. Amini, and F. Loth. Accuracy of cardiac-induced brain motion measurement using displacement-encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI): a phantom study. Magn. Reson. Med. 2020. https://doi.org/10.1002/mrm.28490.

    Article  PubMed  Google Scholar 

  28. Nwotchouang, B. S. T., M. S. Eppelheimer, A. Ibrahimy, J. R. Houston, D. Biswas, R. Labuda, J. R. Bapuraj, P. A. Allen, D. Frim, and F. Loth. Clivus length distinguishes between asymptomatic healthy controls and symptomatic adult women with Chiari malformation type I. Neuroradiology 62:1389–1400, 2020.

    PubMed  Google Scholar 

  29. Pahlavian, S. H., J. Oshinski, X. Zhong, F. Loth, and R. Amini. Regional quantification of brain tissue strain using displacement-encoding with stimulated echoes magnetic resonance imaging. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4040227.

    Article  PubMed  Google Scholar 

  30. Pujol, J., C. Roig, A. Capdevila, A. Pou, J. L. Marti-Vilalta, J. Kulisevsky, A. Escartin, and G. Zannoli. Motion of the cerebellar tonsils in Chiari type I malformation studied by cine phase-contrast MRI. Neurology 45(9):1746–1753, 1995.

    CAS  PubMed  Google Scholar 

  31. Reese, T. G., D. A. Feinberg, J. Dou, and V. J. Wedeen. Phase contrast MRI of myocardial 3D strain by encoding contiguous slices in a single shot. Magn. Reson. Med. 47(4):665–676, 2002.

    PubMed  Google Scholar 

  32. Roberts, D. A.-O., D. A.-O. Asemani, P. A.-O. Nietert, M. A.-O. Eckert, D. A.-O. Inglesby, J. A.-O. Bloomberg, M. A.-O. George, and T. A.-O. Brown. Prolonged microgravity affects human brain structure and function. AJNR Am. J. Neuroradiol. 40(11):1878–1885, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sloots, J. J., G. J. Biessels, and J. J. M. Zwanenburg. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 210:116581, 2020.

    PubMed  Google Scholar 

  34. Smith, B. W., J. Strahle, J. R. Bapuraj, K. M. Muraszko, H. J. Garton, and C. O. Maher. Distribution of cerebellar tonsil position: implications for understanding Chiari malformation. J. Neurosurg. 119(3):812–819, 2013.

    PubMed  Google Scholar 

  35. Soellinger, M., A. K. Rutz, S. Kozerke, and P. Boesiger. 3D cine displacement-encoded MRI of pulsatile brain motion. Magn. Reson. Med. 61(1):153–162, 2009.

    PubMed  Google Scholar 

  36. Spottiswoode, B. S., X. Zhong, A. T. Hess, C. M. Kramer, E. M. Meintjes, B. M. Mayosi, and F. H. Epstein. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans. Med. Imaging 26(1):15–30, 2007.

    CAS  PubMed  Google Scholar 

  37. Strahle, J., K. M. Muraszko, J. Kapurch, J. R. Bapuraj, H. J. Garton, and C. O. Maher. Natural history of Chiari malformation Type I following decision for conservative treatment. J. Neurosurg. Pediatr. 8(2):214–221, 2011.

    PubMed  Google Scholar 

  38. Terem, I., W. W. Ni, M. Goubran, M. S. Rahimi, G. Zaharchuk, K. W. Yeom, M. E. Moseley, M. Kurt, and S. J. Holdsworth. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80(6):2549–2559, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wehner, G. J., L. Jing, C. M. Haggerty, J. D. Suever, J. Chen, S. M. Hamlet, J. A. Feindt, W. Dimitri-Mojsejenko, M. A. Fogel, and B. K. Fornwalt. Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR. J. Cardiovasc. Magn. Reson. 20(1):63, 2018.

    PubMed  PubMed Central  Google Scholar 

  40. Wolpert, S. M., R. A. Bhadelia, A. R. Bogdan, and A. R. Cohen. Chiari I malformations: assessment with phase-contrast velocity MR. Am. J. Neuroradiol. 15(7):1299–1308, 1994.

    CAS  PubMed  Google Scholar 

  41. Khalsa, S. S. S., N. Geh, B. A. Martin, P. A. Allen, J. Strahle, F. Loth, D. Habtzghi, A. Urbizu Serrano, D. McQuaide, H. J. L. Garton, K. M. Muraszko, and C. O. Maher. Morphometric and volumetric comparison of 102 children with symptomatic and asymptomatic Chiari malformation Type I. J. Neurosurg. Pediatr. 21(1):65–71, 2018.

    PubMed  Google Scholar 

  42. Zhong, X., C. H. Meyer, D. J. Schlesinger, J. P. Sheehan, F. H. Epstein, J. M. Larner, S. H. Benedict, P. W. Read, K. Sheng, and J. Cai. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI. Med. Phys. 36(8):3413–3419, 2009.

    PubMed  PubMed Central  Google Scholar 

  43. Zhong, X., B. S. Spottiswoode, C. H. Meyer, C. M. Kramer, and F. H. Epstein. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64(4):1089–1097, 2010.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Conquer Chiari and the National Institutes of Health, NINDS R15 (Grant No. 1R15NS109957-01A1) for providing funding for this research work. This work was also supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR002378. The thoughtful comments of Sheila Pearson at The University of Akron are also acknowledged.

Conflict of interest

All authors declared that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Simplice Talla Nwotchouang.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwotchouang, B.S.T., Eppelheimer, M.S., Pahlavian, S.H. et al. Regional Brain Tissue Displacement and Strain is Elevated in Subjects with Chiari Malformation Type I Compared to Healthy Controls: A Study Using DENSE MRI. Ann Biomed Eng 49, 1462–1476 (2021). https://doi.org/10.1007/s10439-020-02695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02695-7

Keywords

Navigation