Skip to main content
Log in

A New Symmetry of the Colored Alexander Polynomial

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We present a new conjectural symmetry of the colored Alexander polynomial, that is the specialization of the quantum \(\mathfrak {sl}_N\) invariant widely known as the colored HOMFLY-PT polynomial. We provide arguments in support of the existence of the symmetry by studying the loop expansion and the character expansion of the colored HOMFLY-PT polynomial. We study the constraints this symmetry imposes on the group theoretic structure of the loop expansion and provide solutions to those constraints. The symmetry is a powerful tool for research on polynomial knot invariants and in the end we suggest several possible applications of the symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chern, S.-S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kaul, R.K., Govindarajan, T.R.: Three dimensional Chern–Simons theory as a theory of knots and links. Nucl. Phys. B 380, 293–336 (1992). arXiv:hep-th/9111063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Kaul, R.K., Govindarajan, T.R.: Three-dimensional Chern–Simons theory as a theory of knots and links:(II). Multicoloured links. Nucl. Phys. B 393, 392–412 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Three-dimensional Chern–Simons theory as a theory of knots and links (III). Compact semi-simple group. Nucl. Phys. B 402, 548–566 (1993). arXiv:hep-th/9212110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Knot invariants from rational conformal field theories. Nucl. Phys. B 422, 291–306 (1994). arXiv:hep-th/9312215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ramadevi, P., Govindarajan, T.R., Kaul, R.K.: Representations of composite braids and invariants for mutant knots and links in Chern–Simons field theories. Mod. Phys. Lett. A 10, 1635–1658 (1995). arXiv:hep-th/9412084

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31, 865 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mironov, A., Morozov, A., Morozov, An: Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid. JHEP 03, 034 (2012). arXiv:1112.2654

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Anokhina, A., Mironov, A., Morozov, A., Morozov, An: Racah coefficients and extended HOMFLY polynomials for all 5-, 6- and 7-strand braids. Nucl. Phys. B 868, 271–313 (2013). arXiv:1207.0279

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Anokhina, A., Morozov, An: Cabling procedure for the colored HOMFLY polynomials. Theor. Math. Phys. 178, 1–58 (2014). arXiv:1307.2216

    Article  MathSciNet  MATH  Google Scholar 

  12. Guadagnini, E., Martellini, M., Mintchev, M.: Chern–Simons field theory and quantum groups. In: Doebner, H.D., Hennig, J.D. (eds.) Quantum Groups. Lecture Notes in Physics, vol. 370. Springer, Berlin (1990)

    MATH  Google Scholar 

  13. Guadagnini, E., Martellini, M., Mintchev, M.: Chern–Simons holonomies and the appearance of quantum groups. Phys. Lett. B 235, 275 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zodinmawia, P.R.: SU(N) quantum Racah coefficients and non-torus links (2011). arXiv:1107.3918

  15. Zodinmawia, P.R.: Reformulated invariants for non-torus knots and links (2012). arXiv:1209.1346

  16. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). arXiv:hep-th/9912123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Labastida, J.M.F., Mariño, M.: Polynomial invariants for torus knots and topological strings. Commun. Math. Phys. 217, 423–449 (2001). arXiv:hep-th/0004196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Labastida, J.M.F., Mariño, M., Vafa, C.: Knots, links and branes at large N. JHEP 0011, 007 (2000). arXiv:hep-th/0010102

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Labastida, J.M.F., Mariño, M.: A new point of view in the theory of knot and link invariants (2001). arXiv:math/0104180

  20. Mariño, M., Vafa, C.: Framed knots at large N (2001). arXiv:hep-th/0108064

  21. Rosso, M., Jones, V.F.R.: On the invariants of torus knots derived from quantum groups. J. Knot Theory Ramif. 2, 97–112 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Viro, Oleg: Quantum relatives of Alexander polynomial. St. Petersbg. Math. J. 18, 05 (2002)

    Google Scholar 

  23. Rozansky, L., Saleur, H.: Reidemeister torsion, the Alexander polynomial and U(1, 1) Chern–Simons theory. J. Geom. Phys. 13, 105–123 (1994). arXiv:hep-th/9209073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Reshetikhin, N., Stroppel, C., Webster, B.: Schur–Weyl–Type Duality for Quantized gl(1|1), the Burau Representation of Braid Groups, and Invariants of Tangled Graphs, pp. 389–401. Birkhauser Boston, Boston (2013)

    MATH  Google Scholar 

  25. Kauffman, L.H., Saleur, H.: Free fermions and the Alexander–Conway polynomial. Commun. Math. Phys. 141, 293–327 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Mishnyakov, V., Sleptsov, A., Tselousov, N.: A novel symmetry of colored HOMFLY polynomials coming from sl(N/M) superalgebras (2020). arXiv:2005.01188

  27. Itoyama, H., Mironov, A., Morozov, A., Morozov, An: Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations. Int. J. Mod. Phys. A 28, 1340009 (2013). arXiv:1209.6304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Dhara, S., Mironov, A., Morozov, A., Morozov, An., Ramadevi, P., Singh, V.K., Sleptsov, A.: Multi-colored links from 3-strand braids carrying arbitrary symmetric representations. Ann. Henri Poincaré 20(12), 4033–4054 (2019)

  29. Bar-Natan, D.: Perturbative Chern–Simons theory. J. Knot Theor. Ramif. 4, 503–547 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sleptsov, A.: Hidden structures of knot invariants. Int. J. Mod. Phys. A 29, 1430063 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Labastida, J.M.F., Perez, E.: Kontsevich integral for Vassiliev invariants from Chern–Simons perturbation theory in the light-cone gauge. J. Math. Phys. 39, 5183–5198 (1998). arXiv:hep-th/9710176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Dunin-Barkowski, P., Sleptsov, A., Smirnov, A.: Kontsevich integral for knots and Vassiliev invariants. Int. J. Mod. Phys. A 28, 1330025 (2013). arXiv:1112.5406

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chmutov, S., Duzhin, S.: The Kontsevich integral. In: Francoise, J.-P., Naber, G.L., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics, vol. 3, pp. 231–239. Elsevier, Oxford (2006). arXiv:math/0501040

  34. Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev knot invariants (2011). arXiv:1103.5628

  35. Reshetikhin, NYu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, K., Peng, P.: Proof of the Labastida–Marino–Ooguri–Vafa conjecture. J. Differ. Geom. 85(3), 479–525 (2010). arXiv:0704.1526

    MathSciNet  MATH  Google Scholar 

  37. Kirillov, A., Reshetikhin, N.: Representations of the Algebra \(U_q(sl_2)\), q-Orthogonal Polynomials and Invariants of Links. New Developments in the Theory of Knots, pp. 202–256. World Scientific, Singapore (1990)

    Google Scholar 

  38. Lin, X.-S., Zheng, H.: On the Hecke algebras and the colored HOMFLY polynomial. Trans. Am. Math. Soc. 362, 1–18 (2010). arXiv:math/0601267

    Article  MathSciNet  MATH  Google Scholar 

  39. Cromwell, P.R.: Knots and Links. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  40. Itoyama, H., Mironov, A., Morozov, A., Morozov, An: HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations. J. High Energy Phys. 2012, 131 (2012). arXiv:1203.5978

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu, S.: Colored HOMFLY polynomial via skein theory. J. High Energy Phys. 2013, 229 (2013). arXiv:1206.5886

    Article  ADS  Google Scholar 

  42. Mironov, A., Morozov, A.: Eigenvalue conjecture and colored Alexander polynomials. Eur. Phys. J. C 78, 284 (2018). arXiv:1610.03043

    Article  Google Scholar 

  43. Miwa, T., Masaki Jinbo, M., Jimbo, E.Date: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  44. Mironov, A., Mironov, S., Mishnyakov, V., Morozov, A., Sleptsov, A.: Colored Alexander polynomials and KP hierarchy. Phys. Lett. B 783, 268–273 (2018). arXiv:1805.02761

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Mishnyakov, V., Sleptsov, A.: Perturbative analysis of the colored Alexander polynomial and KP soliton \(\tau \)-functions (2019). arXiv:1906.05813

  46. Stanley, R.: Enumerative Combinatorics, v.2. Cambridge University Press, Cambridge (1999). (p.461)

    Book  MATH  Google Scholar 

  47. Mironov, A., Morozov, A., Natanzon, S.: Algebra of differential operators associated with Young diagrams. Theor. Math. Phys. 166, 1–22 (2011). arXiv:0904.4227

    Article  Google Scholar 

  48. Mironov, A., Morozov, A., Natanzon, S.: Algebra of differential operators associated with Young diagrams. J. Geom. Phys. 62, 148–155 (2012). arXiv:1012.0433

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A.: Generalized Kazakov–Migdal–Kontsevich model: group theory aspects. Int. J. Mod. Phys. A 10, 2015 (1995). arXiv:hep-th/9312210

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Orlov, AYu., Scherbin, D.M.: Multivariate hypergeometric functions as tau functions of Toda lattice and Kadomtsev–Petviashvili equation. Physica D 152–153, 51–65 (2001). arXiv:math-ph/0003011

    Article  ADS  MATH  Google Scholar 

  51. Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz theory, and completed cycles. Ann. Math. 163, 517 (2006). arXiv:math.AG/0204305

    Article  MathSciNet  MATH  Google Scholar 

  52. Alvarez, M., Labastida, J.M.F.: Numerical knot invariants of finite type from Chern–Simons perturbation theory. Nucl. Phys. B 433(3), 555–596 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Naculich, S.G., Schnitzer, H.J.: Duality between SU(N)-k and SU(k)-N WZW models. Nucl. Phys. B 347, 687 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  54. Naculich, S.G., Riggs, H.A., Schnitzer, H.J.: Group level duality in WZW models and Chern–Simons theory. Phys. Lett. B 246, 417 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  55. Mlawer, E.J., Naculich, S.G., Riggs, H.A., Schnitzer, H.J.: Group level duality of WZW fusion coefficients and Chern–Simons link observables. Nucl. Phys. B 352, 863 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  56. Morozov, An, Sleptsov, A.: New symmetries for the \(U_q(sl_N)\) 6-j symbols from the Eigenvalue conjecture. JETP Lett. 108(10), 697–704 (2018)

    Article  ADS  Google Scholar 

  57. Alekseev, V., Morozov, An., Sleptsov, A.: Interplay between symmetries of quantum 6-j symbols and the eigenvalue hypothesis. arXiv preprint arXiv:1909.07601 (2019)

  58. Alekseev, V., Morozov, A., Sleptsov, A.: Multiplicity-free \(U_q(sl_N)\) 6-j symbols: relations, asymptotics, symmetries. Nucl. Phys. B 960, 115164 (2020)

    Article  Google Scholar 

  59. Bishler, L., Morozov, A.: Perspectives of differential expansion (2020). arXiv:2006.01190

  60. Garoufalidis, S., Lauda, A.D., Lê, T.T.Q.: The colored HOMFLYPT function is q-holonomic. Duke Math. J. 167, 397–447 (2018)

  61. Kucharski, Piotr, Reineke, Markus, Stosic, Marko, Sułkowski, Piotr: Knots-quivers correspondence. Adv. Theor. Math. Phys. 23(7), 1849–1902 (2019)

    Article  MathSciNet  Google Scholar 

  62. Morton, H.R., Ryder, H.J.: Mutants and \(SU(3)_q\) invariants. Geom. Topol. Monogr. 1, 365–381 (1998). arXiv:math/9810197

    Article  MathSciNet  MATH  Google Scholar 

  63. Morton, H.R., Cromwell, P.R.: Distinguishing mutants by knot polynomials. J. Knot Theor. Ramif. 5, 225–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bishler, L., Dhara, S., Grigoryev, T., Mironov, A., Morozov, A., Morozov, A., Ramadevi, P., Singh, V.K., Sleptsov, A.: Distinguishing mutant knots. J. Geom. Phys. 159, 103928 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ozsváth, P., Szabó, Z.: On knot Floer homology and lens space surgeries. Topology 44(6), 1281–1300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Anokhina, A., Morozov, A.: Towards R-matrix construction of Khovanov–Rozansky polynomials I. Primary T-deformation of HOMFLY. J. High Energy Phys. 2014(7), 63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Anokhina, A., Morozov, A., Popolitov, A.: Nimble evolution for pretzel Khovanov polynomials. Eur. Phys. J. C 79(10), 867 (2019)

    Article  ADS  Google Scholar 

  68. Brini, A., Mariño, M., Eynard, B.: Torus knots and mirror symmetry. Ann. Henri Poincaré 13, 1873–1910 (2012). https://doi.org/10.1007/s00023-012-0171-2

  69. Dunin-Barkowski, P., Kazarian, M., Popolitov, A., Shadrin, S., Sleptsov, A.: Topological Recursion for the extended Ooguri-Vafa partition function of colored HOMFLY-PT polynomials of torus knots. arXiv:2010.11021 (2020)

  70. Lodin, R., Popolitov, A., Shakirov, S., Zabzine, M.: Solving q-Virasoro constraints. Lett. Math. Phys. 110(1), 179–210 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Kolganov, N., Morozov, An: Quantum R-matrices as universal qubit gates. JETP Lett. 111, 519–524 (2020)

    Article  ADS  Google Scholar 

  72. Melnikov, D., Mironov, A., Mironov, S., Morozov, A., Morozov, An: From topological to quantum entanglement. J. High Energy Phys. 2019(5), 116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  73. Mironov, S.: Topological entanglement and knots. Universe 5(2), 60 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Russian Science Foundation (Grant No. 16-12-10344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tselousov.

Additional information

Communicated by Boris Pioline.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Quantum Dimensions

The Quantum Dimensions

Here we show that the quantum dimensions can only change the sign under the action of the tug-the-hook symmetry.

Let us consider a Young diagram R as the union of 5 parts.

  1. 1.

    The white part of the size \(h \times h\), where h is the number of hooks

  2. 2.

    The green part of the size \(g \times h\)

  3. 3.

    The yellow part of the size \(y \times h\)

  4. 4.

    The red part that consists of \(h-1\) rows of length \(r_1, r_2, \dots , r_{h - 1}\)

  5. 5.

    The pink part that consists of \(h - 1\) columns of length \(p_1, p_2, \dots , p_{h - 1}\)

figure i

The formula for the quantum dimension of irreducible representation R

$$\begin{aligned} s_R^{*} = \prod _{(i,j) \in R} \frac{[N - i + j]}{[h_{ij}]} = \prod _{\text {color parts}} \ \prod _{(i,j) \in \text {part}} \frac{[N - i + j]}{[h_{ij}]} \end{aligned}$$
(94)

We consider the case \(N = 0\). Let us note that:

  1. 1.

    The white part of the product in (94) remains the same under the action of the symmetry.

  2. 2.

    The hook part (denominators) corresponding to the red and pink parts remains the same under the action of the symmetry.

Consider the green and yellow parts entirely and the numerators in the red and pink parts. To do this consider the ith row in the red part and the corresponding row in the green part. The contribution reads:

$$\begin{aligned} \left( \frac{[r_i + g + h - i]!}{[h - i]!} \right) _{\text {red and green num.}} \left( \frac{[r_i + h - i]!}{[r_i + g + h - i]!} \right) _{\text {green denom.}} = \frac{[r_i + h - i]!}{[h - i]!}. \end{aligned}$$
(95)

We see that the contribution does not depend on the green and yellow parts, namely gb does not appear in the contribution. It means that this part is invariant under the tug-the-hook symmetry.

Next, consider the ith column in the pink part and the corresponding column in the yellow part. The contribution reads:

$$\begin{aligned}&\left( (-1)^{p_i + y} \ \frac{[p_i + y + h - i]!}{[h - i]!} \right) _{\text {pink and yellow num.}} \left( \frac{[p_i + h - i]!}{[p_i + y + h - i]!} \right) _{\text {yellow denom.}}\nonumber \\&\quad = (-1)^{p_i + y} \ \frac{[p_i + h - i]!}{[h - i]!}. \end{aligned}$$
(96)

The contribution has y dependent part \((-1)^y\). the factor \((-1)^y\) comes from each yellow column and we get the resulting factor \((-1)^{y h}\). Under the action of the tug-the-hook symmetry only yg parameters can change, namely \(y \rightarrow y - \epsilon \) and \(g \rightarrow g + \epsilon \). Considering the ratio we get

$$\begin{aligned} \frac{s^{*}_{\mathbf {T}_{\epsilon }(R)}}{s^{*}_{R}} \Bigg |_{N = 0} = (-1)^{\epsilon \cdot h(R)} \end{aligned}$$

because all contributions except the factors \((-1)^{y}\) remain the same and cancel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishnyakov, V., Sleptsov, A. & Tselousov, N. A New Symmetry of the Colored Alexander Polynomial. Ann. Henri Poincaré 22, 1235–1265 (2021). https://doi.org/10.1007/s00023-020-00980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00980-8

Navigation