Skip to main content

Advertisement

Log in

MIL-160(Al) MOF’s potential in adsorptive water harvesting

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The water crisis is one of the main global risks based on its societal impact, particularly the access to safe drinking water in regions with a dry (arid) or mainly dry (semi-arid) climate. Several techniques are being developed, namely the use of regenerative desiccant (e.g., MOFs) to water capture through adsorption processes. MIL-160(Al) belongs to the fumarate-based MOFs family, and it is one of the most promising MOFs for water harvesting and heat transformation applications. In this study, the potential of MIL-160(Al) as an adsorbent for water sorption based applications was evaluated. For this purpose, adsorption equilibrium isotherms, dynamic adsorption experiments, and MIL-160(Al) granules characterization were performed. H2O vapor adsorption equilibrium isotherm was studied at 303, 323, and 343 K presenting a type V shape and was fitted using the Cooperative Multimolecular Sorption model and Polanyi’s theory model. Additionally, CO2, N2, and O2 adsorption equilibrium isotherms were also measured but at 283, 303, and 323 K, presenting the following order of adsorption affinity: CO2 > O2 > N2. Water vapor adsorption breakthrough experiments corroborate the shape of the water adsorption equilibrium isotherms on MIL-160(Al). Water co-adsorption history proved that the presence of the other air components (CO2, O2, and N2) does not affect water adsorption behavior on MIL-160(Al). DRIFTS measurements proved the MIL-160(Al) structure remains stable during the water vapor exposure. The optimization of the TSA process allowed us to achieve maximum H2O productivity of 305 L·day−1·ton−1 for a regeneration temperature of 353 K and flow rate equal to 0.50 m3·s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

AWGs:

Atmospheric water generators

CMMS:

Cooperative multimolecular sorption

CO2 :

Carbon dioxide

DRIFT:

Diffuse reflectance infrared fourier transform

DRIFTS:

Diffuse reflectance infrared fourier transform spectroscopy

ET:

Expansion tank

FTIR:

Fourier transform-infrared spectroscopy

GA:

Gas analyser

H2O:

Water

He:

Helium

Hg:

Mercury

IUPAC:

International union of pure and applied chemistry

KRICT:

Korea research institute of chemical technology

LabVIEW:

Laboratory virtual instrument engineering workbench

LC:

Liquid container

LDF:

Linear driving force

MOFs:

Metal–organic frameworks

N2 :

Nitrogen

O2 :

Oxygen

PCPs:

Porous coordination polymers

RH:

Relative humidity

SEM:

Scanning electron microscopy

SH:

Sample holder

Std:

Standard deviation

tfeed :

Adsorption time cycle

TG:

Thermogravimetric

Tpurge :

Purge temperature

tpurge :

Desorption time cycle

TSA:

Temperature swing adsorption

XRD:

X-ray diffraction

ZIFs:

Zeolitic imidazolate frameworks

ε :

Adsorption potential

 − ΔH :

Heat of adsorption

m :

Mass difference between the mass recorded by the balanced and the initial mass of the basket containing the activated sample and the glass wool

ρG :

Density of the adsorbate gas at the measuring conditions (T, P)

ρads :

Density of the adsorbed phase

A :

Integration constant

J :

Objective function

k :

Number of iterations

K :

Adsorption equilibrium constant

K 0 , K I , K L :

Equilibrium constant in Langmuir-Ising isotherm

K :

Constant containing the entropy term at infinite temperature

m s :

Adsorbent mass

M W :

Adsorbate molecular weight

P :

Pressure

P o :

Saturation vapor pressure

Pr :

Productivity

Q :

Flow rate

q :

Adsorbed amount of the component on the adsorbent

q m :

Saturation adsorption capacity

q sat,I :

Specific saturation adsorption capacity in Ising isotherm

q sat,L :

Specific saturation adsorption capacity in Langmuir isotherm

n k :

Total number of instants of evaluation of the performance parameters

R :

Ideal gas constant (8.314 J·mol1·K1)

T :

Absolute temperature of system

V c :

Volume of inert parts (permanent magnet, basket, metal hook, and glass wool)

V S :

Adsorbent volume

References

  1. Borges, D.D., Normand, P., Permiakova, A., Babarao, R., Heymans, N., Galvao, D.S., Serre, C., De Weireld, G., Maurin, G.: Gas adsorption and separation by the Al-based metal–organic framework MIL-160. J. Phys. Chem. C 121(48), 26822–26832 (2017). https://doi.org/10.1021/acs.jpcc.7b08856

    Article  CAS  Google Scholar 

  2. Boriskina, S.V., Raza, A., Zhang, T., Wang, P., Zhou, L., Zhu, J.: Nanomaterials for the water-energy nexus. MRS Bull. 44(1), 59–66 (2019). https://doi.org/10.1557/mrs.2018.325

    Article  Google Scholar 

  3. Brandt, P., Nuhnen, A., Lange, M., Möllmer, J., Weingart, O., Janiak, C.: Metal–organic frameworks with potential application for SO2 separation and flue gas desulfurization. ACS Appl. Mater. Interfaces 11(19), 17350–17358 (2019). https://doi.org/10.1021/acsami.9b00029

    Article  CAS  PubMed  Google Scholar 

  4. Cadiau, A., Lee, J.S., Damasceno Borges, D., Fabry, P., Devic, T., Wharmby, M.T., Martineau, C., Foucher, D., Taulelle, F., Jun, C.H., Hwang, Y.K., Stock, N., De Lange, M.F., Kapteijn, F., Gascon, J., Maurin, G., Chang, J.S., Serre, C.: Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. (Deerfield Beach, Fla) 27(32), 4775–4780 (2015). https://doi.org/10.1002/adma.201502418

    Article  CAS  Google Scholar 

  5. Coelho, J.A., Ribeiro, A.M., Ferreira, A.F.P., Lucena, S.M.P., Rodrigues, A.E., De Azevedo, D.C.S.: Stability of an Al-fumarate MOF and its potential for CO2 capture from wet stream. Ind. Eng. Chem. Res. 55(7), 2134–2143 (2016). https://doi.org/10.1021/acs.iecr.5b03509

    Article  CAS  Google Scholar 

  6. Da Silva, F.A., Silva, J.A., Rodrigues, A.E.: A general package for the simulation of cyclic adsorption processes. Adsorption 5(3), 229–244 (1999). https://doi.org/10.1023/a:1008974908427

    Article  Google Scholar 

  7. Dabrowski, A.: Adsorption and its Applications in Industry and Environmental Protection–Studies in Surface Science and Catalysis, v.120: Suppl. Part A (1998)

  8. de Visser, S.P.: Polarizability-based equation of state: application to CO, N2 and O2. Chem. Phys. Lett. 515(1), 170–172 (2011). https://doi.org/10.1016/j.cplett.2011.07.039

    Article  CAS  Google Scholar 

  9. Fathieh, F., Kalmutzki, M.J., Kapustin, E.A., Waller, P.J., Yang, J., Yaghi, O.M.: Practical water production from desert air. Sci. Adv. 4(6), 3198 (2018). https://doi.org/10.1126/sciadv.aat3198

    Article  CAS  Google Scholar 

  10. Fessehaye, M., Abdul-Wahab, S.A., Savage, M.J., Kohler, T., Gherezghiher, T., Hurni, H.: Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014). https://doi.org/10.1016/j.rser.2013.08.063

    Article  Google Scholar 

  11. Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W.L., Hudson, M.R., Yaghi, O.M.: Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136(11), 4369–4381 (2014). https://doi.org/10.1021/ja500330a

    Article  CAS  PubMed  Google Scholar 

  12. Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R., Müller, U.: The progression of Al-based metal-organic frameworks—From academic research to industrial production and applications. Microporous Mesoporous Mater. 157, 131–136 (2012). https://doi.org/10.1016/j.micromeso.2011.08.016

    Article  CAS  Google Scholar 

  13. Hanikel, N., Prévot, M.S., Yaghi, O.M.: MOF water harvesters. Nat. Nanotechnol. 15(5), 348–355 (2020). https://doi.org/10.1038/s41565-020-0673-x

    Article  CAS  PubMed  Google Scholar 

  14. Jeremias, F., Khutia, A., Henninger, S.K., Janiak, C.: MIL-100(Al, Fe) as water adsorbents for heat transformation purposes-a promising application. J. Mater. Chem. 22(20), 10148–10151 (2012). https://doi.org/10.1039/C2jm15615f

    Article  CAS  Google Scholar 

  15. Jeremias, F., Lozan, V., Henninger, S.K., Janiak, C.: Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans. 42(45), 15967–15973 (2013). https://doi.org/10.1039/C3dt51471d

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, Y., Woortman, A.J.J., Alberda van Ekenstein, G.O.R., Loos, K.: A biocatalytic approach towards sustainable furanic–aliphatic polyesters. Polym. Chem. 6(29), 5198–5211 (2015). https://doi.org/10.1039/C5PY00629E

    Article  CAS  Google Scholar 

  17. Kalmutzki, M.J., Diercks, C.S., Yaghi, O.M.: Metal–organic frameworks for water harvesting from air. Adv. Mater. 30(37), 1704304 (2018). https://doi.org/10.1002/adma.201704304

    Article  CAS  Google Scholar 

  18. Karmakar, A., Prabakaran, V., Zhao, D., Chua, K.J.: A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. Appl. Energy 269, 115070 (2020). https://doi.org/10.1016/j.apenergy.2020.115070

    Article  CAS  Google Scholar 

  19. Khalil, B., Adamowski, J., Rojas, M., Reilly, K.: Towards an independent dew water irrigation system for arid or insular areas. Paper presented at the 2014 Montreal, Quebec Canada July 13–July 16, 2014, St. Joseph, MI

  20. Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., Ozga-Zielinski, B.: A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustain. Water Resour. Manag. 2(1), 71–86 (2016). https://doi.org/10.1007/s40899-015-0038-z

    Article  Google Scholar 

  21. Khutia, A., Rammelberg, H.U., Schmidt, T., Henninger, S., Janiak, C.: Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 25(5), 790–798 (2013). https://doi.org/10.1021/Cm304055k

    Article  CAS  Google Scholar 

  22. Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., Wang, E.N.: Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9(1), 1191 (2018). https://doi.org/10.1038/s41467-018-03162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., Wang, E.N.: Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356(6336), 430–434 (2017). https://doi.org/10.1126/science.aam8743

    Article  CAS  PubMed  Google Scholar 

  24. Kogan, B., Trahtman, A.: The moisture from the air as water resource in arid region: hopes, doubts and facts. J. Arid Environ. 53(2), 231–240 (2003). https://doi.org/10.1006/jare.2002.1028

    Article  Google Scholar 

  25. Küsgens, P., Rose, M., Senkovska, I., Fröde, H., Henschel, A., Siegle, S., Kaskel, S.: Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120(3), 325–330 (2009). https://doi.org/10.1016/j.micromeso.2008.11.020

    Article  CAS  Google Scholar 

  26. LaPotin, A., Kim, H., Rao, S.R., Wang, E.N.: Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52(6), 1588–1597 (2019). https://doi.org/10.1021/acs.accounts.9b00062

    Article  CAS  PubMed  Google Scholar 

  27. Leclerc, M., Gauvin, R.: Functional Materials for Energy, Sustainable Development and Biomedical Sciences. De Gruyter, Göttingen, Germany (2014)

    Book  Google Scholar 

  28. Mekonnen, M.M., Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2(2), 1500323 (2016). https://doi.org/10.1126/sciadv.1500323

    Article  Google Scholar 

  29. Moreira, M.A., Ribeiro, A.M., Ferreira, A.F.P., Rodrigues, A.E.: Cryogenic pressure temperature swing adsorption process for natural gas upgrade. Sep. Purif. Technol. 173, 339–356 (2017). https://doi.org/10.1016/j.seppur.2016.09.044

    Article  CAS  Google Scholar 

  30. Park, Y.-J., Lee, S.-J., Moon, J.-H., Choi, D.-K., Lee, C.-H.: Adsorption equilibria of O2, N2, and Ar on carbon molecular sieve and zeolites 10X, 13X, and LiX. J. Chem. Eng. Data 51(3), 1001–1008 (2006). https://doi.org/10.1021/je050507v

    Article  CAS  Google Scholar 

  31. Pazwash, H.: Urban Storm Water Management. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  32. Peng, X., Lin, L.-C., Sun, W., Smit, B.: Water adsorption in metal–organic frameworks with open-metal sites. AIChE J. 61(2), 677–687 (2015). https://doi.org/10.1002/aic.14707

    Article  CAS  Google Scholar 

  33. Permyakova, A., Skrylnyk, O., Courbon, E., Affram, M., Wang, S., Lee, U.H., Valekar, A.H., Nouar, F., Mouchaham, G., Devic, T., De Weireld, G., Chang, J.-S., Steunou, N., Frère, M., Serre, C.: Synthesis optimization, shaping, and heat reallocation evaluation of the hydrophilic metal–organic framework MIL-160(Al). Chemsuschem 10(7), 1419–1426 (2017). https://doi.org/10.1002/cssc.201700164

    Article  CAS  PubMed  Google Scholar 

  34. Pillai, R.S., Peter, S.A., Jasra, R.V.: Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous Mesoporous Mater. 113(1), 268–276 (2008). https://doi.org/10.1016/j.micromeso.2007.11.042

    Article  CAS  Google Scholar 

  35. Plaza, M.G., Ribeiro, A.M., Ferreira, A., Santos, J.C., Lee, U.H., Chang, J.-S., Loureiro, J.M., Rodrigues, A.E.: Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Sep. Purif. Technol. 90, 109–119 (2012). https://doi.org/10.1016/j.seppur.2012.02.023

    Article  CAS  Google Scholar 

  36. Plessius, R., Kromhout, R., Ramos, A.L., Ferbinteanu, M., Mittelmeijer-Hazeleger, M.C., Krishna, R., Rothenberg, G., Tanase, S.: Highly selective water adsorption in a lanthanum metal-organic framework. Chemistry 20(26), 7922–7925 (2014). https://doi.org/10.1002/chem.201403241

    Article  CAS  PubMed  Google Scholar 

  37. Regufe, M.J., Tamajon, J., Ribeiro, A.M., Ferreira, A., Lee, U.H., Hwang, Y.K., Chang, J.S., Serre, C., Loureiro, J.M., Rodrigues, A.E.: Syngas purification by porous amino-functionalized titanium terephthalate MIL-125. Energy Fuels 29(7), 4654–4664 (2015). https://doi.org/10.1021/acs.energyfuels.5b00975

    Article  CAS  Google Scholar 

  38. Reinsch, H., van der Veen, M.A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., Stock, N.: Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 25(1), 17–26 (2013). https://doi.org/10.1021/cm3025445

    Article  CAS  Google Scholar 

  39. Ribeiro, A.M., Campo, M.C., Narin, G., Santos, J.C., Ferreira, A., Chang, J.S., Hwang, Y.K., Seo, Y.K., Lee, U.H., Loureiro, J.M., Rodrigues, A.E.: Pressure swing adsorption process for the separation of nitrogen and propylene with a MOF adsorbent MIL-100(Fe). Sep. Purif. Technol. 110, 101–111 (2013). https://doi.org/10.1016/j.seppur.2013.03.009

    Article  CAS  Google Scholar 

  40. Rieth, A.J., Yang, S., Wang, E.N., Dincă, M.: Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Central Sci. 3(6), 668–672 (2017). https://doi.org/10.1021/acscentsci.7b00186

    Article  CAS  Google Scholar 

  41. Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984)

    Google Scholar 

  42. Santos Pereira, L., Cordery, I., Iacovides, I.: Using non-conventional water resources. In: Coping with Water Scarcity. Springer, Dordrecht (2009)

  43. Shiklomanov, I.A.: World Water Resources: a new appraisal and assessment for the 21st century. In. United Nations Educational, Scientific and Cultural Organization (UNESCO), (1998)

  44. Tannert, N., Jansen, C., Nießing, S., Janiak, C.: Robust synthesis routes and porosity of the Al-based metal–organic frameworks Al-fumarate, CAU-10-H and MIL-160. Dalton Trans. 48(9), 2967–2976 (2019). https://doi.org/10.1039/C8DT04688C

    Article  CAS  PubMed  Google Scholar 

  45. Tarte, P.: Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta Part A 23(7), 2127–2143 (1967). https://doi.org/10.1016/0584-8539(67)80100-4

    Article  CAS  Google Scholar 

  46. Teo, H.W.B., Chakraborty, A.: Water adsorption on various metal organic framework. IOP Conf. Ser. 272(1), 012019 (2017)

    Article  Google Scholar 

  47. Tu, Y., Wang, R., Zhang, Y., Wang, J.: Progress and expectation of atmospheric water harvesting. Joule 2(8), 1452–1475 (2018). https://doi.org/10.1016/j.joule.2018.07.015

    Article  CAS  Google Scholar 

  48. Wahiduzzaman, M., Lenzen, D., Maurin, G., Stock, N., Wharmby, M.T.: Rietveld refinement of MIL-160 and its structural flexibility upon H2O and N2 adsorption. Eur. J. Inorg. Chem. 2018(32), 3626–3632 (2018). https://doi.org/10.1002/ejic.201800323

    Article  CAS  Google Scholar 

  49. Wang, J.Y., Wang, R.Z., Tu, Y.D., Wang, L.W.: Universal scalable sorption-based atmosphere water harvesting. Energy 165, 387–395 (2018). https://doi.org/10.1016/j.energy.2018.09.106

    Article  Google Scholar 

  50. Weiss, A., Reimer, N., Stock, N., Tiemann, M., Wagner, T.: Screening of mixed-linker CAU-10 MOF materials for humidity sensing by impedance spectroscopy. Microporous Mesoporous Mater. 220, 39–43 (2016). https://doi.org/10.1016/j.micromeso.2015.08.020

    Article  CAS  Google Scholar 

  51. Yaghi, O.M., Kalmutzki, M.J., Diercks, C.S.: Water sorption applications of MOFs. In: Yaghi, O.M. (ed.) Introduction to Reticular Chemistry, pp. 395–427. Wiley, Weinheim (2019)

    Chapter  Google Scholar 

Download references

Acknowledgements

Shivaji Sircar was a great contributor for Adsorption Science and Technology and was linked in many ways to our research group (LSRE) on “Cyclic adsorption/reaction processes”. Shivaji lectured in Portugal in the NATO ASI Adsorption Science and Technology in 1988, where his former Ph.D. advisor Alan Myers also lectured. In 1991, one of us visited Shivaji at Air Products when walking the first steps into PSA processes, and will always remember the fruitful conversations at FOA meetings (starting 1983 in Germany), AIChE meetings, and Iberian Adsorption Meeting in Madrid (2008). We will always remember Shivaji’s contributions to our research area and also his human kindness. Therefore, the authors acknowledge the contribution of Prof. Shivaji Sircar to this work. This work was a result of project “AIProcMat@N2020—Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); Associate Laboratory LSRE-LCM—UID/EQU/50020/2020—funded by national funds through FCT/MCTES (PIDDAC). C.G.S. acknowledges the FCT Investigator Programme (IF/00514/2014) with financing from the European Social Fund and the Human Potential Operational Programme. The Korean authors are grateful to the Global Frontier Center for Hybrid Interface Materials of Korea (GFHIM) (Grant No. NRF-2013M3A6B1078879) for financial support. The authors acknowledge Prof. Christian Serre for his contribution in the synthesis and shaping of MIL-160(Al).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jon-San Chang or A. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 4081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.P., Ribeiro, A.M., Silva, C.G. et al. MIL-160(Al) MOF’s potential in adsorptive water harvesting. Adsorption 27, 213–226 (2021). https://doi.org/10.1007/s10450-020-00286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00286-5

Keywords

Navigation