Skip to main content
Log in

Sinorhizobium medicae 419 vs S. meliloti 1021: differences in root nodules induced by these two strains on the Medicago truncatula host

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Symbiosis between plants of family Fabaceae and bacteria genus Rhizobium is the most widespread interaction, in which atmospheric nitrogen is reduced into ammonia. This highly oxygen-sensitive process is performed by endosymbiotc forms of rhizobia called bacteroids, which occupy newly formed plant organs called root nodules. The goal in this paper was to explore the differences in the (ultra)structure and Reactive Oxygen Species (ROS) localization in two symbiotic interactions between legume model plant Medicago truncatula Gaertn. and bacteria from genus Sinorhizobium. Two bacterial strains—Sinorhizobium meliloti 1021 and Sinorhizobium medicae 419 have the ability of inducing root nodules on the Medicago truncatula, however, such nodules differ in effectiveness of biological nitrogen fixation. We demonstrated that root nodules made of S. medicae 419 [fully effective (F++)] induce a lower number of nodule per plant in comparison to S. meliloti 1021—(partially effective F±). Although the differences in the structure are scant, there are some discrepancies in the ultrastructure. In the meristem of F± nodules, there are Cajal bodies and a lower number of vacuole profiles by larger size in comparison to the F++. Nodules F++ have a thicker interzone and store less starch than F+/, while they have higher esterase activity. Localization of different ROS seems to be comparable in the two type of nodules but interestingly, there is not any Nitric Oxide (NO) in the infection thread of F± root nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abd-Alla MH, Koyro H-W, Yan F, Schubert S, Peiter E (2000) Functional structure of the indeterminate Vicia faba L. root nodule: implications for metabolite transport. J Plant Physiol 157:335–343

    Article  CAS  Google Scholar 

  • Aneja P, Charles TC (1999) Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 181:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Giler KE (2006) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr Cycl Agroecosyst 76:319–330

    Article  Google Scholar 

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19:970–975

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188(4):960–976

    Article  CAS  PubMed  Google Scholar 

  • Bederska M, Znojek E, Borucki W (2012) Movement of fluorescent dyes Lucifer Yellow (LYCH) and carboxyfluorescein (CF) in Medicago truncatula Gaertn. roots and root nodules. Symbiosis 58:183–190

    Article  PubMed  Google Scholar 

  • Borucki W (2007) A comparative cytological and morphometric analysis of vacuolation in central tissue of the effective and ineffective pea (Pisum sativum L.) root nodules. Acta Soc Bot Pol 76(2):109–118

    Article  Google Scholar 

  • Brown SM, Walsh KB (1994) Anatomy of the legume nodule cortex with respect to nodule permeability. Aust J Plant Physiol 21:49–68

    Google Scholar 

  • Burdon JJ, Gibson AH, Searle SD, Woods MJ, Brockwell J (1999) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: within—species interactions. J Appl Ecol 36:398–409

    Article  Google Scholar 

  • Cam Y, Pierre O, Boncompagni E, Herouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196(2):548–560

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palmo JM, Sandalio LM, Gomez M, del Rio LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Haeze W, Rycke RD, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci 100(20):11789–11794

    Article  PubMed  Google Scholar 

  • Dalton DA, Joyner SL, Becana M, Iturbe-Ormaexte I, Chatfield JM (1998) Antioxidant defenses in the peripheral cell layers of legume root nodules. Plant Physiol 116:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kereters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  • del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 191:405–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Escribano RJ (2004) Towards a better understanding of the role of reactive oxygen species in legume root nodules. PhD Thesis, Wageningen, The Netherlands

  • Forrest SI, Verma DPS, Dhindsa R (1991) Starch content and activities of starch-metabolizing enzymes in effective and ineffective root nodules of soybean. Can J Bot 69:697–701

    Article  CAS  Google Scholar 

  • Fottrell PF (1968) Esterase isoenzymes from legume root nodules. Phytochem 7:23

    Article  CAS  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    CAS  PubMed  Google Scholar 

  • Garau D, Reeve WG, Brau L, Deiana P, Yates RJ, James D, Tiwari RP, O’Hara GW, Howieson JG (2005) The symbiotic requirements of different Medicago ssp. suggest the evolution of Sinorhizobium meliloti and E. medicae with hosts differentially adapted to soil pH. Plant Soil 276:263–277

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28(11):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Hartmann A, Giraud JJ, Catroux G (1998) Genotypic diversity of Sinorhizobium (formerly Rhizobium) meliloti strains isolated directly from a soil and from nodules of alfalfa (Medicago sativa) grown in the same soils. FEMS Microbiol Ecol 25:107–116

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP (2003) A comparative study of carboxyfluorescein diacetate and carboxy-fluorescein diacetate succinimidyl ester as indicators of bacterial activity. J Microbiol Methods 52:379–388

    Article  CAS  PubMed  Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Ascgi-Smiti S, Puppo A (2011) Both plant and bacterial nitrate reductase contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Howieson JG, Loi A, Carr SJ (1995) Biserrula pelecinus L—a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46:997–1009

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A-138A

    Google Scholar 

  • Kazmierczak T, Nagymihaly M, Lamouche F, Barriere Q, Guefrachi I, Alunni B, Ouadghiri M, Ibijbijen J, Kondorosi E, Mergaert P, Gruber V (2017) Specific host-responsive associations between Medicago truncatula accessions and Sinorhizobium strains. Mol Plant Microbe Interact 30(5):399–409

    Article  CAS  PubMed  Google Scholar 

  • Łotocka B, Kopcińska J, Golinowski W (1997) Morphogenesis of root nodules in white clover. I. Effective root nodules induced by the wild type Rhizobium leguminosarum biovar. trifolii. Acta Soc Bot Pol 66:273–292

    Article  Google Scholar 

  • Ma F, Peterson CA (2001) Development of cell wall modifications in the endodermis and exodermis of Allium cepa roots. Can J Bot 79:621–634

    Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Matamoros M, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29(5/6):881–888

    Article  CAS  Google Scholar 

  • Mishustin EN, Shil’nikova VK (1971) Biological fixation of atmospheric nitrogen. The Pennsylvania State University Press, Pennsylvania

    Google Scholar 

  • Morris GE (2008) The Cajal body. BBA Mol Cell Res 1783(11):2108–2115

    CAS  Google Scholar 

  • Murphy PM, Masterson CL (1970) Determination of multiple forms of esterases in rhizobium by paper electrophoresis. J Gen Microbiol 61:121–129

    Article  CAS  PubMed  Google Scholar 

  • Mytton LR (1983) Host plant selection and breeding for improved symbiotic efficiency. In: Jones DG, Davies DR (eds) W: The physiology genetics and nodulation of temperate legumes. Pitman, Londyn, pp 373–393

    Google Scholar 

  • Ortega-Villasante C, Rellan-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernandez LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56(418):2239–2251

    Article  CAS  PubMed  Google Scholar 

  • Parker MA (1999) Mutualism in metapopulations of legumes and rhizobia. Am Nat 153:48–60

    Article  Google Scholar 

  • Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Herouart D, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume-rhizobium symbiosis. J Exp Bot 57(8):1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process. New Phytol 165:683–701

    Article  CAS  PubMed  Google Scholar 

  • Rangin C, Brunel B, Cleyet-Marel JC, Perrineau MM, Bena G (2008) Effects of Medicago truncatula genetic diversity, rhizobial competition, and strain effectiveness on the diversity of a natural Sinorhizobium species community. Appl Environ Microbiol 74(18):5653–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Trans R Soc 363:971–984

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate a high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rome S, Brunel B, Normand P, Fernandez MP, Cleyet-Marel JC (1996) Evidence that two genomic species of Rhizobium are associated with Medicago truncatula. Arch Microbiol 165:285–288

    Article  CAS  PubMed  Google Scholar 

  • Roponen I (1970) The effect of darkness on the leghemoglobin content and amino acid level in the root nodules of pea plants. Physiol Plant 23:452–460

    Article  CAS  Google Scholar 

  • Santos R, Herouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Mol Microiol 38:750–759

    Article  CAS  Google Scholar 

  • Santos R, Herouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa—Sinorhizobium meliloti symbiotic interactions. Mol Plant Microbe Interact 14:86–89

    Article  CAS  PubMed  Google Scholar 

  • Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:534–539

    Article  CAS  PubMed  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Gen 32:33–57

    Article  CAS  Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant physiol 132:2196–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simsek S, Ojanen-Reuhs T, Stephens SB, Reuhs BL (2007) Strain-ecotype specificity in Sinorhizobium melilotiMedicago truncatula symbiosis is correlated to succinoglucan oligosaccharide structure. J Bacteriol 189:7733–7740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms. Pure and Applied Aspects, Chapman and Hall, p 256

    Book  Google Scholar 

  • Sujkowska-Rybkowska M (2012) Reactive oxygen species production and antioxidative defense in pea (Pisum sativum L.) root nodules after short-term aluminum treatment. Acta Physiol Plant 34:1387–1400

    Article  CAS  Google Scholar 

  • Sujkowska M, Górska-Czekaj M, Bederska M, Borucki W (2011) Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules. Symbiosis 54:1–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Terpolilli JJ (2009) Why are the symbioses between some genotypes of Sinorhizobium and Medicago suboptimal for N2 fixation? PhD Thesis, Murdoch University

  • Terpolilli JJ, O’Hara GW, Tiwari RP, Dilworth MJ, Howieson JG (2008) The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytol 179:62–66

    Article  PubMed  Google Scholar 

  • Thrall PH, Burdon JJ, Woods M (2000) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian legumes: within and among genera interaction. J Appl Ecol 37:52–65

    Article  Google Scholar 

  • Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Manoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Van de Wiel C, Norris JH, Bocfaenek B, Dickstein R, Bisseling T (1990) Nodulin gene expression and ENOD2 localization in effective, nitrogen-fixing and ineffective, bacteria-free nodules of alfalfa. Plant Cell 2:1009–1017

    Article  Google Scholar 

  • Vance CP (1998) Nodule carbon metabolism: organic acid for N2 fixation. In: Elemrich C, Kondorosi A, Newton W (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht

    Google Scholar 

  • Vance CP, Johnson LEB (1983) Plant determined ineffective nodules in alfalfa (Medicago sativa): structural and biochemical comparisons. Can J Bot 61:93–106

    Article  CAS  Google Scholar 

  • Vasse J, Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfafa nodules. J Bacteriol 8:4295–4306

    Article  Google Scholar 

  • Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villegas MDC, Rome S, Maure L, Domergue O, Gardan L, Bailly X, Cleyet-Morel JC, Brunel B (2006) Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. Medicaginis) of S. meliloti. Syst Appl Microbiol 29:526–538

    Article  Google Scholar 

  • Walsh KB (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27:637–655

    Article  CAS  Google Scholar 

  • Wang K, Kang L, Anand A, Lazarovits G, Mysore KS (2007) Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytol 174:212–223

    Article  CAS  PubMed  Google Scholar 

  • West SA, Kiers ET, Simms EL, Denison RF (2002) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R Soc Lond B 685–694

  • Wood SM, Layzell DB, Newcomb W, Pankhurst CE (1984) A morphometric study of effective nodules induced by Rhizobium loti and Bradyrhizobium sp. (Lotus) on Lotus pedunculatus. Can J Bot 63:43–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Bederska-Błaszczyk.

Additional information

Communicated by O. Ferrarese-Filho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bederska-Błaszczyk, M., Sujkowska-Rybkowska, M. & Borucki, W. Sinorhizobium medicae 419 vs S. meliloti 1021: differences in root nodules induced by these two strains on the Medicago truncatula host. Acta Physiol Plant 43, 7 (2021). https://doi.org/10.1007/s11738-020-03166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03166-1

Keywords

Navigation