Skip to main content
Log in

Non-symbolic numerosity encoding escapes spatial frequency equalization

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The exact visual mechanisms underpinning the approximate number system are still debated. Recent evidence suggests that numerosity is extracted on segmented visual objects, at least for a moderate numerical range (e.g., < 100 items), whereas alternative models rather propose that numerosity is derived from low-level features (e.g., power spectrum) of an unsegmented image, independently from the range. Here, to disentangle these accounts, we generated stimuli that were equalized for spatial frequency amplitude spectrum and luminance across sets of moderate range numerosities (e.g., 9–15 dots), while independently manipulating the perceived item segmentation by connecting dots with illusory contours (ICs). In Experiment 1, participants performed a numerical discrimination task, in which they had to select the numerically larger between two stimuli: a reference stimulus (always 12 dots) and a test stimulus (from 9 to 15 dots) containing 0, 2 or 4 pairs of dots grouped by ICs lines. In Experiment 2, participants were presented only the test stimulus and performed an estimation task. Results clearly showed that in both experiments participants’ performance followed well-known numerical signatures (e.g., distance effect and scalar variability), with numerosity that was underestimated as the illusory connections increased. Crucially, this was found despite spatial frequencies and luminance were kept constant across all the experimental stimuli and these variables were thus uninformative about numerosity. Taken together, these findings indicate that power spectrum in its own cannot explain numerical processing. Rather, visual segmentation mechanisms may be crucial in such processing at least for a moderate numerosity range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Another participant was tested but discarded from the analysis for unreliable performance (i.e., about 50% of trials answered with “0” responses).

References

  • Adriano, A., Rinaldi, L., & Girelli, L. (2021). Visual illusions as a tool to hijack numerical perception: Disentangling non-symbolic number from its continuous visual properties. Journal of Experimental Psychology: Human Perception & Performance. https://doi.org/10.1037/xhp0000844.

    Article  Google Scholar 

  • Allik, J., & Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception and Psychophysics, 49(4), 303–314.

    Article  PubMed  Google Scholar 

  • Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–266.

    Article  PubMed  Google Scholar 

  • Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265–270.

    Article  PubMed  Google Scholar 

  • Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attribute: A review. Perception, 45(1–2), 5–31.

    Article  PubMed  Google Scholar 

  • Anobile, G., Cicchini, G. M., Pomè, A., & Burr, D. C. (2017). Connecting visual objects reduces perceived numerosity and density for sparse but not dense patterns. Journal of Numerical Cognition, 3(2), 133–146.

    Article  Google Scholar 

  • Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B Biological Sciences, 281(1797), 20141791.

    Article  PubMed Central  Google Scholar 

  • Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131–1136.

    Article  PubMed  Google Scholar 

  • Burr, D., & Ross, J. (2008a). A visual sense of number. Current Biology, 18(6), 425–428.

    Article  PubMed  Google Scholar 

  • Burr, D., & Ross, J. (2008b). Response: Visual number. Current Biology, 18(18), R857–R858.

    Article  Google Scholar 

  • Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693–4698.

    Article  Google Scholar 

  • Chakravarthi, R., & Bertamini, M. (2020). Clustering leads to underestimation of numerosity, but crowding is not the cause. Cognition, 198, 104195.

    Article  PubMed  Google Scholar 

  • Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7(1), 1–7.

    Article  Google Scholar 

  • Dakin, S. C., Tibber, M. S., Greenwood, J. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences, 108(49), 19552–19557.

    Article  Google Scholar 

  • Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.

    Article  PubMed  Google Scholar 

  • DeWind, N. K. (2019). The number sense is an emergent property of a deep convolutional neural network trained for object recognition. bioRxiv, 609347.

  • DeWind, N. K., Bonner, M. F., & Brannon, E. M. (2020). Similarly oriented objects appear more numerous. Journal of Vision, 20(4), 1–11.

    Article  Google Scholar 

  • DeWind, N. K., Park, J., Woldorff, M. G., & Brannon, E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 76–89.

    Article  PubMed  Google Scholar 

  • Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS)—a research review. Frontiers in Psychology, 6, 295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrich, J. F., Nuerk, H. C., Klein, E., Moeller, K., & Huber, S. (2019). Set size influences the relationship between ANS acuity and math performance: A result of different strategies? Psychological Research Psychologische Forschung, 83(3), 590–612.

    Article  PubMed  Google Scholar 

  • Durgin, F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18(18), R855–R856.

    Article  PubMed  Google Scholar 

  • Fornaciai, M., & Park, J. (2018). Early numerosity encoding in visual cortex is not sufficient for the representation of numerical magnitude. Journal of Cognitive Neuroscience, 30(12), 1788–1802.

    Article  PubMed  Google Scholar 

  • Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity processing in early visual cortex. NeuroImage, 157, 429–438.

    Article  PubMed  Google Scholar 

  • Franconeri, S. L., Bemis, D. K., & Alvarez, G. A. (2009). Number estimation relies on a set of segmented objects. Cognition, 113(1), 1–13.

    Article  PubMed  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.

    Article  PubMed  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology General, 141(4), 642–648.

    Article  PubMed  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS ONE, 7(5), e37426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012c). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649–1659.

    Article  Google Scholar 

  • Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35.

    Article  PubMed  Google Scholar 

  • Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123–1126.

    Article  PubMed  Google Scholar 

  • He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin and Review, 16(3), 509–517.

    Article  PubMed  Google Scholar 

  • He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences, 112(41), E5647–E5655.

    Article  Google Scholar 

  • Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604.

    Article  Google Scholar 

  • Joubert, O. R., Rousselet, G. A., Fabre-Thorpe, M., & Fize, D. (2009). Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise. Journal of Vision, 9(1), 1–16.

    Article  PubMed  Google Scholar 

  • Katzin, N., Katzin, D., Rosén, A., Henik, A., & Salti, M. (2020). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088.

    Article  PubMed  Google Scholar 

  • Kirjakovski, A., & Matsumoto, E. (2016). Numerosity underestimation in sets with illusory contours. Vision Research, 122, 34–42.

    Article  PubMed  Google Scholar 

  • Kluth, T., & Zetzsche, C. (2016). Numerosity as a topological invariant. Journal of Vision, 16(3), 1–39.

    Article  Google Scholar 

  • Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.

    Article  PubMed  Google Scholar 

  • Linares, D., & López-Moliner, J. (2016). Quickpsy: An R package to fit psychometric functions for multiple groups. The R Journal, 8(1), 122–131.

    Article  Google Scholar 

  • Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology General, 111(1), 1–22.

    Article  PubMed  Google Scholar 

  • Morgan, M. J., Raphael, S., Tibber, M. S., & Dakin, S. C. (2014). A texture-processing model of the ‘visual sense of number.’ Proceedings of the Royal Society of London B Biological Sciences, 281(1790), 20141137.

    Article  Google Scholar 

  • Nasr, K., Viswanathan, P., & Nieder, A. (2019). Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Science Advances, 5(5), 7903.

    Article  Google Scholar 

  • Nieder, A. (2002). Seeing more than meets the eye: Processing of illusory contours in animals. Journal of Comparative Physiology A, 188(4), 249–260.

    Article  Google Scholar 

  • Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366–382.

    Article  PubMed  Google Scholar 

  • Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences, 101(19), 7457–7462.

    Article  Google Scholar 

  • Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin and Review, 1(1), 29–55.

    Article  PubMed  Google Scholar 

  • Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2015). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748–763.

    PubMed  PubMed Central  Google Scholar 

  • Peirce, J. W. (2007). PsychoPy-psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.

    Article  PubMed  Google Scholar 

  • Pomè, A., Anobile, G., Cicchini, G. M., Scabia, A., & Burr, D. C. (2019). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81(8), 2604–2611.

    Article  Google Scholar 

  • Railo, H., Karhu, V. M., Mast, J., Pesonen, H., & Koivisto, M. (2016). Rapid and accurate processing of multiple objects in briefly presented scenes. Journal of Vision, 16(3), 1–11.

    Article  Google Scholar 

  • RStudio Team. (2018). RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/. Accessed 20 Dec 2020.

  • Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘visual number sense’ in hierarchical generative models. Nature Neuroscience, 15(2), 194–196.

    Article  PubMed  Google Scholar 

  • The Jamovi Project (2019). Jamovi (version 1.1.5) [Computer Software]. https://www.jamovi.org. Accessed 20 Dec 2020.

  • Thompson, P., & Burr, D. (2009). Visual aftereffects. Current Biology, 19(1), R11–R14.

    Article  PubMed  Google Scholar 

  • Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12(6), 1–19.

    Article  Google Scholar 

  • Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726–5732.

    Article  Google Scholar 

  • Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504.

    Article  PubMed  Google Scholar 

  • Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10(2), 130–137.

    Article  Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception and Psychophysics, 63(8), 1293–1313.

    Article  PubMed  Google Scholar 

  • Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by Ministero dell'Istruzione, Università e Ricerca (MIUR), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Adriano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study was approved by the Local Ethical Committee (protocol N° RM-2020-230). The study was conducted in accordance with the Declaration of Helsinki.

Consent to participate

An informed consent document was signed before the experiment began.

Consent for publication

An informed consent document was signed before the experiment began.

Availability of data and material

The datasets generated during the current study are available online as Supplementary Materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriano, A., Girelli, L. & Rinaldi, L. Non-symbolic numerosity encoding escapes spatial frequency equalization. Psychological Research 85, 3061–3074 (2021). https://doi.org/10.1007/s00426-020-01458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-020-01458-2

Navigation