Skip to main content
Original Article

Improving Bi-Factor Exploratory Modeling

Empirical Target Rotation Based on Loading Differences

Published Online:https://doi.org/10.1027/1614-2241/a000163

Abstract. Bi-factor exploratory modeling has recently emerged as a promising approach to multidimensional psychological measurement. However, state-of-the-art methods relying on target rotation require researchers to select an arbitrary cut-off for defining the target matrix. Unfortunately, the consequences of such choice on factor recovery remain uninvestigated under realistic conditions (e.g., factors differing in their average loadings). Built upon the iterative target rotation based on Schmid-Leiman algorithm (SLi), a novel method is here introduced (SLiD). SLiD settles an empirical, factor-specific cut-off based on the first prominent one-lagged difference of sorted squared normalized factor loadings. SLiD and SLi with arbitrary cut-off (ranging from .05 to .20) performance were evaluated via Monte Carlo simulation manipulating sample size, number of specific factors, number of indicators, and cross-loading magnitude. Results indicate that SLiD performed the best for all conditions. For SLi, and due to the presence of minor factors, smaller cut-offs (i.e., .05) outperformed higher ones (i.e., .20).

References

  • Abad, F. J., Garcia-Garzon, E., Garrido, L. E., & Barrada, J. R. (2017). Iteration of partially specified target matrices: Application to the bi-factor case. Multivariate Behavioral Research, 52, 416–429. https://doi.org/10.1080/00273171.2017.1301244 First citation in articleCrossrefGoogle Scholar

  • Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16, 397–438. https://doi.org/10.1080/10705510903008204 First citation in articleCrossrefGoogle Scholar

  • Bollmann, S., Heene, M., & Küchenhoff, H. (2015). What can the Real World do for simulation studies? A comparison of exploratory methods. (Technical Report 181). Retrieved from Department of Statistics, University of Munich https://epub.ub.uni-muenchen.de/24518/ First citation in articleGoogle Scholar

  • Browne, M. W. (1972). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115–120. https://doi.org/10.1111/j.2044-8317.1972.tb00482.x First citation in articleCrossrefGoogle Scholar

  • Browne, M. W. (2001). The latent structure of memory: A confirmatory factor-analytic study of memory distinctions. Multivariate Behavioral Research, 36, 29–51. https://doi.org/10.1207/S15327906MBR3601 First citation in articleCrossrefGoogle Scholar

  • Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bi-factor and second order models of quality-of-life. Multivariate Behavioral Research, 41, 189–225. https://doi.org/10.1207/s15327906mbr4102_5 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Ferrando, P. J., & Lorenzo-Seva, U. (2017). Program FACTOR at 10: Origins, development and future directions. Psicothema, 29, 236–240. https://doi.org/10.7334/psicothema2016.304 First citation in articleGoogle Scholar

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B., … Hothorn, T. (2017). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-6. Retrieved from https://CRAN.R-project.org/package=mvtnorm First citation in articleGoogle Scholar

  • Green, S., & Yang, Y. (2018). Empirical underidentification with the bifactor model: A case study. Educational and Psychological Measurement, 78, 717–736. https://doi.org/10.1177/0013164417719947 First citation in articleCrossrefGoogle Scholar

  • Hattori, M., Zhang, G., & Preacher, K. J. (2017). Multiple local solutions and geomin rotation. Multivariate Behavioral Research, 52, 720–731. https://doi.org/10.1080/00273171.2017.1361312 First citation in articleCrossrefGoogle Scholar

  • Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 41–54. https://doi.org/10.1007/BF02287965 First citation in articleCrossrefGoogle Scholar

  • Izquierdo, I., Olea, J., & Abad, F. J. (2014). Exploratory factor analysis in validation studies: Uses and recommendations. Psicothema, 26, 395–400. https://doi.org/10.7334/psicothema2013.349 First citation in articleGoogle Scholar

  • jamovi Project. (2018). jamovi. (Version 0.8.1.13) [Computer Software]. Retrieved from https://www.jamovi.org/ First citation in articleGoogle Scholar

  • Jennrich, R. I. (2004). Rotation to simple loadings using component loss functions: The orthogonal case. Psychometrika, 69, 257–273. https://doi.org/10.1007/S11336-003-1136-B First citation in articleCrossrefGoogle Scholar

  • Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76, 537–549. https://doi.org/10.1007/s11336-011-9218-4 First citation in articleCrossrefGoogle Scholar

  • Jennrich, R. I., & Bentler, P. M. (2012). Exploratory bi-factor analysis: The oblique case. Psychometrika, 77, 442–454. https://doi.org/10.1007/s11336-012-9269-1 First citation in articleCrossrefGoogle Scholar

  • Kiers, H. A. L. (1994). Simplimax: Oblique rotation to an optimal target with simple structure. Psychometrika, 59, 567–579. https://doi.org/10.1007/BF02294392 First citation in articleCrossrefGoogle Scholar

  • Lorenzo-Seva, U. (1999). Promin: A method for oblique factor rotation. Multivariate Behavioral Research, 34, 347–365. https://doi.org/10.1207/S15327906MBR3403_3 First citation in articleCrossrefGoogle Scholar

  • Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology, 2, 57–64. https://doi.org/10.1027/1614-2241.2.2.57 First citation in articleLinkGoogle Scholar

  • Mansolf, M., & Reise, S. P. (2016). Exploratory bifactor analysis: The Schmid-Leiman orthogonalization and Jennrich-Bentler analytic rotations. Multivariate Behavioral Research, 51, 698–717. https://doi.org/10.1080/00273171.2016.1215898 First citation in articleCrossrefGoogle Scholar

  • Meade, A. W. (2008, April). Power of AFIs to detect CFA model misfit. Paper presented at the 23rd Annual Conference of the Society for Industrial and Organizational Psychology, San Francisco, CA First citation in articleGoogle Scholar

  • Moore, T. M., Reise, S. P., Depaoli, S., & Haviland, M. G. (2015). Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis. Multivariate Behavioral Research, 50, 149–161. https://doi.org/10.1080/00273171.2014.973990 First citation in articleCrossrefGoogle Scholar

  • Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2015). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling: A Multidisciplinary Journal, 23, 116–139. https://doi.org/10.1080/10705511.2014.961800 First citation in articleCrossrefGoogle Scholar

  • Myers, N. D., Ahn, S., & Jin, Y. (2013). Rotation to a partially specified target matrix in exploratory factor analysis: How many targets? Structural Equation Modeling: A Multidisciplinary Journal, 20, 131–147. https://doi.org/10.1080/10705511.2013.742399 First citation in articleCrossrefGoogle Scholar

  • Myers, N. D., Jin, Y., Ahn, S., Celimli, S., & Zopluoglu, C. (2015). Rotation to a partially specified target matrix in exploratory factor analysis in practice. Behavior Research Methods, 47, 494–505. https://doi.org/10.3758/s13428-014-0486-7 First citation in articleCrossrefGoogle Scholar

  • Peeters, C. F. W. (2012). Rotatitional uniqueness conditions under oblique factor correlation metric. Psychometrika, 77, 288–292. https://doi.org/10.1007/S11336-012-9259-3 First citation in articleCrossrefGoogle Scholar

  • Raykov, T., & Little, T. D. (1999). A note on procrustean rotation in exploratory factor analysis: A computer intensive approach to goodness-of-fit evaluation. Educational and Psychological Measurement, 59, 47–57. https://doi.org/10.1177/00131649921969730 First citation in articleCrossrefGoogle Scholar

  • Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696. https://doi.org/10.1080/00273171.2012.715555 First citation in articleCrossrefGoogle Scholar

  • Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92, 544–559. https://doi.org/10.1080/00223891.2010.496477.Bifactor First citation in articleCrossrefGoogle Scholar

  • Reise, S. P., Moore, T., & Maydeu-Olivares, A. (2011). Target rotations and assessing the impact of model violations on the parameters of unidimensional item response theory models. Educational and Psychological Measurement, 71, 684–711. https://doi.org/10.1177/0013164410378690 First citation in articleCrossrefGoogle Scholar

  • Revelle, W. (2017). Psych: Procedures for personality and psychological research. Northwestern University: Evanston, IL. (Version 1.7.8). Retrieved from https://CRAN.R-project.org/package =psch First citation in articleGoogle Scholar

  • R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/ First citation in articleGoogle Scholar

  • Schmid, J., & Leiman, J.M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. https://doi.org/10.1007/BF02289209 First citation in articleCrossrefGoogle Scholar

  • Trendafilov, N. T. (1994). A simple method for procrustean rotation in factor analysis using majorization theory. Multivariate Behavioral Research, 29, 385–408. https://doi.org/10.1207/s15327906mbr2904_4 First citation in articleCrossrefGoogle Scholar

  • Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personal Research Section Report No. 984) . Washington, DC: Department of the Army First citation in articleCrossrefGoogle Scholar

  • Waller, N. G. (2017). Direct Schmid-Leiman transformations and rank-deficient loadings matrices. Psychometrika, 83, 858–870. https://doi.org/10.1007/s11336-017-9599-0 First citation in articleCrossrefGoogle Scholar