Skip to main content
Published Online:https://doi.org/10.1027/1614-2241/a000181

Abstract. In psychological tests, the time needed to respond to the items provides collateral information about the latent traits of the test takers. This, however, requires a measurement model that incorporates the response times in addition to the responses. Such a measurement model is usually based on a full specification of the response time distribution. In the present article, we suggest a novel modeling approach that requires fewer assumptions. In the approach, the responses are modeled with a unidimensional two-parameter logistic model. The single response times are summed to the scale-specific total testing time which is then related to the latent trait of the two-parameter logistic model via a smooth adaptive Gaussian mixture (SAGM) model. The approach can be justified against the background of the bivariate generalized linear item response theory modeling framework (Molenaar, Tuerlinckx, & van der Maas, 2015a). Its utility is investigated in two simulation studies and an empirical example.

References

  • Bartholomew, D., & Tzamourani, P. (1999). The goodness of fit of latent trait models in attitude measurement. Sociological Methods & Research, 27, 524–546. https://doi.org/10.1177/0049124199027004003 First citation in articleCrossrefGoogle Scholar

  • Bolsinova, M., & Maris, G. (2016). A test for conditional independence between response time and accuracy. British Journal of Mathematical and Statistical Psychology, 69, 62–79. https://doi.org/10.1111/bmsp.12059 First citation in articleCrossrefGoogle Scholar

  • Bolsinova, M., & Tijmstra, J. (2018). Improving precision of ability estimation: Getting more from response times. British Journal of Mathematical and Statistical Psychology, 71, 13–38. https://doi.org/10.1111/bmsp.12104 First citation in articleCrossrefGoogle Scholar

  • Bunji, K., & Okada, K. (2019). Item response and response time model for personality assessment via linear ballistic accumulation. Japanese Journal of Statistics and Data Science, 2, 263–297. https://doi.org/10.1007/s42081-019-00040-4 First citation in articleCrossrefGoogle Scholar

  • Chan, S.-C., Lu, T.-S., & Tsai, R.-C. (2014). Incorporating response time to analyze test data with mixture structural equation modeling. Psychological Testing, 61, 463–488. First citation in articleGoogle Scholar

  • Cheng, Y., & Ke-Hai, Y. (2010). The impact of fallible item parameter estimates on latent trait recovery. Psychometrika, 75, 280–291. https://doi.org/10.1007/s11336-009-9144-x First citation in articleCrossrefGoogle Scholar

  • Dunn, T., Lushene, R., & O’Neil, H. (1972). Complete automation of the MMPI and a study of its response latencies. Journal of Consulting and Clinical Psychology, 39, 381–387. https://doi.org/10.1037/h0033855 First citation in articleCrossrefGoogle Scholar

  • Fan, Z., Wang, C., Chang, H., & Douglas, J. (2012). Utilizing response time distributions for item selection in CAT. Journal of Educational and Behavioral Statistics, 37, 655–670. https://doi.org/10.3102/1076998611422912 First citation in articleCrossrefGoogle Scholar

  • Ferrando, P. (2006). Person-item distance and response time: An empirical study in personality measurement. Psicológica, 27, 137–148. First citation in articleGoogle Scholar

  • Ferrando, P. (2016). An extended multidimensional IRT formulation for the linear item factor analysis model. Methodology, 12, 1–10. https://doi.org/10.1027/1614-2241/a000098 First citation in articleLinkGoogle Scholar

  • Ferrando, P., & Lorenzo-Seva, U. (2007a). An item response theory model for incorporating response time data in binary personality items. Applied Psychological Measurement, 31, 525–543. https://doi.org/10.1177/0146621606295197 First citation in articleCrossrefGoogle Scholar

  • Ferrando, P., & Lorenzo-Seva, U. (2007b). A measurement model for Likert responses that incorporates response time. Multivariate Behavioral Research, 42, 675–706. https://doi.org/10.1080/00273170701710247 First citation in articleCrossrefGoogle Scholar

  • GESIS. (2017). GESIS Panel – Standard Edition. (ZA5665 Data file Version 22.0.0 ed.). GESIS Data Archive. https://doi.org/10.4232/1.12903 First citation in articleGoogle Scholar

  • Goldberg, L., Johnson, J., Eber, H., Hogan, R., Ashton, M., Cloninger, C., & Gough, H. (2006). The international personality item pool and the future of public-domain personality measures. Journal of Research in Personality, 40, 84–96. https://doi.org/10.1016/j.jrp.2005.08.007 First citation in articleCrossrefGoogle Scholar

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Berlin, Germany: Springer. First citation in articleCrossrefGoogle Scholar

  • Hernandez-Camacho, A., Olea, J., & Abad, F. (2017). Comparison of uni- and multidimensional models applied in testlet-based tests. Methodology, 13, 135–143. https://doi.org/10.1027/1614-2241/a000137 First citation in articleLinkGoogle Scholar

  • Höhne, J., Revilla, M., & Lenzner, T. (2018). Comparing the performance of agree/disagree and item-specific questions across PCs and smartphones. Methodology, 14, 109–118. https://doi.org/10.1027/1614-2241/a000151 First citation in articleLinkGoogle Scholar

  • Klein Entink, R., van der Linden, W., & Fox, J. (2009). A Box-Cox normal model for response times. British Journal of Mathematical and Statistical Psychology, 62, 621–640. https://doi.org/10.1348/000711008X374126 First citation in articleCrossrefGoogle Scholar

  • Kuncel, R. (1973). Response processes and relative location of subject and item. Educational and Psychological Measurement, 33, 545–563. https://doi.org/10.1177/001316447303300302 First citation in articleCrossrefGoogle Scholar

  • Loyes, T., Legrand, C., Schettino, A., & Pourtois, G. (2014). Semi-parametric proportional hazards models with crossed random effects for psychometric response times. British Journal of Mathematical and Statistical Psychology, 67, 304–327. https://doi.org/10.1111/bmsp.12020 First citation in articleCrossrefGoogle Scholar

  • Molenaar, D., Bolsinova, M., & Vermunt, J. (2017). A semi-parametric within subject mixture approach to the analyses of responses and response times. British Journal of Mathematical and Statistical Psychology, 71, 205–228. https://doi.org/10.1111/bmsp.12117 First citation in articleCrossrefGoogle Scholar

  • Molenaar, D., Tuerlinckx, F., & van der Maas, H. (2015a). A bivariate generalized linear item response theory modeling framework to the analysis of responses and response times. Multivariate Behavioral Research, 50, 56–74. https://doi.org/10.1080/00273171.2014.962684 First citation in articleCrossrefGoogle Scholar

  • Molenaar, D., Tuerlinckx, F., & van der Maas, H. (2015b). A generalized linear factor model approach to the hierarchical framework for responses and response times. British Journal of Mathematical and Statistical Psychology, 68, 197–219. https://doi.org/10.1111/bmsp.12042 First citation in articleCrossrefGoogle Scholar

  • Norets, A. (2010). Approximation of conditional densities by smooth mixtures of regressions. The Annals of Statistics, 38, 1733–1766. https://doi.org/10.1214/09-AOS765 First citation in articleCrossrefGoogle Scholar

  • Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S–χ2: An item fit index for use with dichotomous item response theory models. Applied Psychological Measurement, 27, 289–298. https://doi.org/10.1177/0146621603027004004 First citation in articleCrossrefGoogle Scholar

  • Ranger, J. (2013a). Modeling responses and response times in personality tests with rating scales. Psychological Test and Assessment Modeling, 55, 361–382. First citation in articleGoogle Scholar

  • Ranger, J. (2013b). A note on the hierarchical model for responses and response times in tests of van der Linden (2007). Psychometrika, 78, 538–544. https://doi.org/10.1007/s11336-013-9324-6 First citation in articleCrossrefGoogle Scholar

  • Ranger, J., & Kuhn, J. (2012). A flexible latent trait model for response times in tests. Psychometrika, 77, 31–47. https://doi.org/10.1007/s11336-011-9231-7 First citation in articleCrossrefGoogle Scholar

  • Ranger, J., & Kuhn, J. (2018). Modeling responses and response times in rating scales with the linear ballistic accumulator. Methodology, 14, 119–132. https://doi.org/10.1027/1614-2241/a000152 First citation in articleLinkGoogle Scholar

  • Ranger, J., & Ortner, T. (2012). A latent trait model for response times on tests employing the proportional hazards model. British Journal of Mathematical and Statistical Psychology, 65, 334–349. https://doi.org/10.1111/j.2044-8317.2011.02032.x First citation in articleCrossrefGoogle Scholar

  • Rouder, J. (2005). Are unshifted distributional models appropriate for response time? Psychometrika, 70, 377–381. https://doi.org/10.1007/s11336-005-1297-7 First citation in articleCrossrefGoogle Scholar

  • Russell, D., Kahn, J., Altmaier, E., & Spoth, R. (1998). Analyzing data from experimental studies: A latent variable structural equation modeling approach. Journal of Counseling Psychology, 45, 18–29. https://doi.org/10.1037/0022-0167.45.1.18 First citation in articleCrossrefGoogle Scholar

  • Tuerlinckx, F., Molenaar, D., & van der Maas, H. (2016). Diffusion-based item response theory modeling. In W. van der LindenR. HambletonEds., Handbook of modern item response theory (pp. 283–301). London, UK: Chapman and Hall/CRC Press. https://doi.org/10.1201/9781315374512 First citation in articleGoogle Scholar

  • van der Linden, W. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287–308. https://doi.org/10.1007/s11336-006-1478-z First citation in articleCrossrefGoogle Scholar

  • van der Linden, W. (2008). Using response times for item selection in adaptive tests. Journal of Educational and Behavioral Statistics, 31, 5–20. https://doi.org/10.3102/1076998607302626 First citation in articleCrossrefGoogle Scholar

  • van der Linden, W. (2009a). A bivariate lognormal response-time model for the detection of collusion between test takers. Journal of Educational and Behavioral Statistics, 34, 378–394. https://doi.org/10.3102/1076998609332107 First citation in articleCrossrefGoogle Scholar

  • van der Linden, W. (2009b). Conceptual issues in response-time modeling. Journal of Educational Measurement, 46, 247–272. https://doi.org/10.1111/j.1745-3984.2009.00080.x First citation in articleCrossrefGoogle Scholar

  • van der Linden, W., Klein Entink, R., & Fox, J. (2010). IRT parameter estimation with response times as collateral information. Applied Psychological Measurement, 34, 327–347. https://doi.org/10.1177/0146621609349800 First citation in articleCrossrefGoogle Scholar

  • van der Maas, H., & Wagenmakers, E. (2005). A psychometric analysis of chess expertise. American Journal of Psychology, 118, 29–60. https://doi.org/10.2307/30039042 First citation in articleGoogle Scholar

  • Villani, M., Kohn, R., & Giordani, P. (2009). Regression density estimation using smooth adaptive Gaussian mixtures. Journal of Econometrics, 153, 155–173. https://doi.org/10.1016/j.jeconom.2009.05.004 First citation in articleCrossrefGoogle Scholar

  • Wang, C., Chang, H., & Douglas, J. (2013). The linear transformation model with frailties for the analysis of item response times. British Journal of Mathematical and Statistical Psychology, 66, 144–168. https://doi.org/10.1111/j.2044-8317.2012.02045.x First citation in articleCrossrefGoogle Scholar

  • Wang, C., Fan, Z., Chang, H., & Douglas, J. (2013). A semiparametric model for jointly analyzing response times and accuracy in computerized testing. Journal of Educational and Behavioral Statistics, 38, 381–417. https://doi.org/10.3102/1076998612461831 First citation in articleCrossrefGoogle Scholar

  • Wang, C., & Xu, G. (2015). A mixture hierarchical model for response times and response accuracy. British Journal of Mathematical and Statistical Psychology, 68, 456–477. https://doi.org/10.1111/bmsp.12054 First citation in articleCrossrefGoogle Scholar

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25. https://doi.org/10.2307/1912526 First citation in articleCrossrefGoogle Scholar